
AMIGAM

Introduction to
//-

EI

-`:,u



-`
\`_



4 44JG4     .-

Introduction to

Ami8a

`-



`-

`-

-

C0PYF}IGHT

T3hr5:art:,gh:.a:I:?p:,e:gy;r'!!its?ec|:::::d::eTPT:it,?rr:ed:AtcT:i:|a!n:c:.;,eo:r;'r=R:g3a:,tesfn::saenryeeqecTrhJ:,gofg#:ELtFra#,,n':rwel?I:bf:

;[s;tg;;;;u;¥[:a:n:s:e:r;r::;§f:c::n::t:hd;5r::ngy:a:js:r:rfgojp{;chg::re;:g;::Fgto§p:y,{u:§e:o¥eT:o:rdggj;g:gg[,i:a;:+§csT:§{;:b;£a:Eg:;£hjeu:u:¥s:e:r:v:;u§:f:t:7:j%;
violation  of  the  law.

DISCLAIMEF}

COMMODOBE-AMIGA,   lNC.  MAKES  NO  WAF`BANTIES,   EITHEF3  EXPBESSED  08  IMPLIED,   WITH  BESPECT TO
THE   PBOGBAMS   DESCBIBED   HEBEIN,   THEIB   QUALITY,    PEBFOBMANCE,   MEBCHANTABILITY,    0B   FITNESS
FC)a  ANY  PABTICuLAB  PUBPOSE.   THESE  PBOGBAMS  ABE  SOLD  "AS  IS."    THE  ENTIBE  BISK  AS  TO  THEIB
QUALITY    AND    PEF3FOF]MANCE    IS    WITH    THE    BUYEF].        SHOULD    THE    PF`OGF`AMS    PF}OVE    DEFECTIVE

5%LML$8|;NOGRE.TAHfi|5A,PIKES,H£3E,'RDT,!ER,88¥5Bs,(%EDTHEi%TRET*iLE8g)EAt%BsiEs°+HETEEiTiRE°cGORSATM8F
ALL   NECESSAPY   DAMAGES.       IN   NO   EVENT   WILL   COMMODOBE-AMIGA,    lNC„    BE   LIABLE   FOB   DIBECT,
INDIF]ECT,   INCIDENTAL,  OF]  CONSEQUENTIAL  DAMAGES  F`ESULTING  FF]OM  ANY  DEFECT  IN  THE  PF30GF]AMS
EVEN  IF  IT  HAS  BEEN  ADVISED  OF  THE  POSSIBLITY  OF  SUCH  DAMAGES.   SOME  LAWS  DO  NOT  ALLOW  THE
EXCLUSION  08  LIMITATION  OF  IMPLIED  WABBANTIES  OP  LIABLITIES  FOP  INCIDENTAL  0B  CONSEQUENTIAL
DAMAGES,   SO  THE  ABOVE  LIMITATION  08  EXCLUSION  MAY  NOT  APPLY,

8:i;gL:o%nodreG::8h6CBr#a::er:rg?8teeTeadrktsra°dfe&°aTkT°odf°5eo-#:gd%r:nEi.ectronicsLimited.

a;g{haecr°T::Sr:gri:?:Srteedretfatdr::eaTka:kta?8tf#:dp::ti?e:,trLi8:markofAIphacom,lnc.

§Bjj§;r§o,::Cr;e:\r;s%jtt;e§r§jj:tt:r;;§a:a{:;T§:;:d§r;n;a::;o%;;i;B;3jjo:t;:p;;s{de;a:5:r:::#;:;:r;i::,:n:c::aT,:rnksofEpsonAmer,ca,,nc
bakiir!::26qsL:SterraJdeetmpaLrksofaroek{5:?:rfr5[Svi3{o:eovy'%ttipAa;:?ircdaF?nTpany.
Qume  is  a  registered  trademark  of  and  Letterpro  20  ls  a  trademark  of  Qume  Corporation.

WAPINING:   This  equipment  has  been  certified  to  comply with  the  limits  for  a  Class  a
computing  device,   pursuant  to  subpart  J  of  Part  15  of  FCC  rules,     Only  peripherals
(computer  input/output  devices,   terminals,   printers,   etc.)   certified  to  comply  with
the  Class   a  limits  may  be  attached  to  this  computer.     Operation  with  non-certif ied
peripherals  ls  likely  to  result  in  interference  to  radio  and  TV  reception.

The  last  four  digits  of  the  Am.lga  serial  number  indicate  the  month  and  year  of  manufacture.

Printed  in  U.S.A.

CBM  Product  Number  372100-01   Bev.   010-1-85



RE

Contents

Chapter  1:

Chapter  2:

Chapter  3:

Chapter  4:

Chapter  5:

Chapter  6:

Chapter  7:

Appendix A:

Appendix  a:

Appendix  C:

Glossary

Index

Introducing  the  Amiga

Setting  Up  the  Amiga

Getting  Started

Using  the  Workbench

Adding  to  the  Amiga

Caring  for the Amiga

Reference

Workbench  Tools

AmigaDOS  Messages

Changing  the  Pointer

i=fl

2-1

3-1     `-
4-1

5-1

6-1

7-1

A-1

A-10

A-12

G-1

r=il `-



-,



Chapter 1   u

Introducing the Amiga

Welcome!   You're  about to  meet  an  extraordinary personal
computer.   It's powerful,  yet it's  easy to  learn and use.   It's
agile:   it  can  work at several tasks  all  at the  same time.    It's
colorful   and   musical.      In   this   manual,   you'll   meet   the
Amiga  and  learn  how  you  can  use  it  both  at  work  and  at

play.

Introducing  the  Amiga          1-1

RE

\-



About This Manual-

-

ERE

This  manual  is  for  everyone  who  uses  an  Amiga.    Chapter  2,   "Setting  Up
the  Amiga,"  shows  how  to  put  your  Amiga  together.     If  you're  using  an
Amiga  for  the  first  time,  read  Chapter  3,   "Getting  Started,"  to  learn  the
basics.

Chapter  4,  "Using the  Workbench,"  describes  many  of the  important tasks
you  perform  when  using  an  Amiga.

Chapter  5,  "Adding to  the  Amiga,"  describes  printers,  extra  memory,  and
other  add-ons  available  for  your  Amiga.

Chapter  6,  "Caring  for  the  Amiga,"  tells  how  to  keep  your  Amiga  in  good
working  order.

Chapter  7,   "Reference,"  includes  specifications  for  the  Amiga,   as  well  as
information  about:

•      how  to  change  many  of  the  settings  for  your  Amiga

•     the  Amiga  input/output  connectors

Appendix  A,   "Workbench  Tools,»  tells  how  to  use  the  Amiga's  built-in
clock  and  notepad,  as  well  as  how  to  see  demonstrations  of  the  Amiga's

graphics .

Appendix  8,  "AmigaDOS  Messages,"  lists  Amiga  error  numbers  and  what
to  do  if  you  get  one.

Appendix  C,  "Changing the  Pointer,"  shows  you  how  to  modify  the  image
that  moves  on  the  display  when  you  move  the  Amiga's  mouse.

At the  end,  you'll find  a glossary  of important terms  and  an  index.    Terms
from  the  glossary  are  shown  in  !.fcz/j.cs  where  they  first  appear  in  the  text.

1-2          Introducing  the  Amiga



For More Information

See  the  Grc]pfe!.crcz/f ,   Texfcrc}/f ,  and  Am!.gc}  Bast.c  manuals  to  learn  how  to
use  these tools.   If you  are  interested  in  developing software  for the  Amiga,
or   if  you'd   like   to   learn   the   details   of   how   the   Amiga   works,   see   the

AmigaDOS  User's  Manual,  the  Amiga  Hardware  Manual, the  Amiga  ROM
Kernel    Manual,    the    AmigaDOS    Developer's    Manual,    the    AmigaDOS
Technical Reference  Manual, The Developer's Guide to the Workbench,  a.nd
Intuition..    The  Amiga  User  Interface.    These  manuals  are  a.vaila,b\e  from

your  Amiga  dealer.

Introducing  the  Amiga          1-3

RE

-

E|`



`-

RE

-



Chapter2    ~

Setting Up the Amiga

Your Amiga takes only a few minutes to put together.   Here
are  the  things  you'll  find  packaged  with  the  Amiga:

•       the  mcz!.n  wn!1

•     the  ACpower  cord

•     the  keyboard

•     the  keyboard  cable

•     themouse

•     three  microdisks

•      manuals,  including the  one  you're  reading now

•      warranty  information

Setting  up  the  Amiga         2-1

`-



EE

RE

-

Where to Find the Connectors

On  the  back  of  the  main  unit,  you'll  find  a  number  of  connecfors.    These
are  places  where  you  attach  cables  and  other  devices:

Parallel                                 Audio                                      TV  Modulator
Connector                      Connectors                      Connector

i --'`

Keyboard                  Disk  Drive          Serial                     PGB                         NTSC
Connector              Connector         Connector         Connector          Connector

2-2         Setting  up  the  Amiga



On the  right  side  of the  main unit,  you'll  find two  more  connectors  labeled
„1„   and   "2":

Before You Start

Before  putting  your  Amiga  together,   be  sure   to   read   each   instruction
carefully.    While  it's  not  difficult  to  assemble  the  Amiga,  it  !.s  possible  to
damage  it  if  you  don't  follow  the  instructions.

When  you  attach  any  of  the  cables  or  insert  anything  into   a  connector,
remember:     use  a  minimum  of  force.     You  can  tell  when  a  cable  and
connector are properly mated when the  end of the  cable  first slides  into the
connector,  then  stops  when  it  is  in  as  far  as  it  will  go.     Always  start  by

pushing  gently  on  the  end  of  a  cable.     If  the  cable  doesn't  slide  inward,
check  the  cable  and  connector  to  make  sure  they  match  and  that  they're
properly  oriented  before  applying  more  force.

Setting  up  the  Amiga         2-3

RE

EEL

`-



EE

ERE

L_

Attaching the Keyboard

Find  the  keyboard  cable,  the  coiled  cable  that's  straight  at  one  end.    Plug
the  straight  end  into  the  keyboc!rd  connecfor  on  the  back  of  the  Amiga:

Now put the rest of
the  keyboard  cable
underneath         the
main  unit.  There's
a    square    opening
for    the    cable    to
pass  through:

Finally,  plug  the  other  end  of  the
keyboard  cable  into  the  keyboard:

2-4         Setting  up  the  Amiga



You can change the tilt of the keyboard by folding down the two legs on the
bottom.    Try  both  positions  to  find  the  tilt  that's  most  comfortable:

With   the   legs   folded   up,   you
can   slide  the   keyboard  under
the  main  unit.  This  helps  save
space    on    your   work   surface
when    you're    not    using    the
Amiga,

Setting  up  the  Amiga         2-5

-`

-

I-



RE

EE

-,

Attaching the Mouse

Before attaching a new mouse,  turn the mouse upside down and pull out the
piece  of  foam  that  holds  the  mowse  bcz//  in  place.     (If  you  don't  get  all  the
foam  out,  see  the  "Cleaning  the  Mouse"  section  in  Chapter  6  to  find  out
how  to  uncover  the  mouse  ball.)

To   attach  the   mouse,   just  plug  the   end   of  the   mouse's   cable   into  the
connector  labeled  "1"  on  the  right  side  of  the  main  unit.     (It's  a  tight  fit;'
this  helps  keep  the  plug  in  place.    Be  sure  to  press  firmly.)

If you're  right-handed,  you'll  want the  mouse  to  the  right  of the  keyboard.
If you're  left-handed,  put the  mouse  to  the  left.    Make  sure  that  the  place
you   set   aside   for   the   mouse   is   at   least    12   inches   by    12   inches    (30
centimeters  by  30  centimeters)  and  that  it's  clean  and  flat.

2-6         Setting  up  the  Amiga



Attaching  the Video Monitor

The  v!.deo  77ton!.for  displays  visual  information.     There  are  three  kinds  of
video  monitors  you  can  use  with  the  Amiga:

•      an  fiGB  mon!.for.     The  Am!.ga  Monz`for  available  from  Amiga
dealers  is  an  RGB  monitor.    RGB  monitors  normally  produce
the  best-quality  display.

•      an  NTSC  (composite  video)  monitor.   There  are  many kinds  of
NTSC  monitors  made  specifically  for  computers.    In  addition,
many newer televisions have  NTSC connectors that allow you to
connect  them  directly  to  computers.

•      a  television.      Conventional   televisions   (those   without   NTSC
connectors)  can  also  be  used  as  monitors  for  the  Amiga.

When choosing a monitor,  note that televisions  and  NTSC monitors  cannot
display  as  much information  as  RGB  monitors.   RGB  monitors  can  show  80
characters  clearly  on  each  line  on  the  display,  while  most  televisions  and
NTSC  monitors  can  show  only  60  characters  clearly.

Setting  up  the  Amiga         2-7

RE

ERE

`.-



`-

`-

-

Attaching  an RGB Monitor

To attach an Amiga Monitor,  use the w.deo cc2b/e supplied with the monitor.
Plug  the  small  end  of  the  video  cable  into  the  connector  on  the  back  of
monitor:

Plug the  large  end  of the  cable  into  the  f3GB  co#„ecfor  on  the  back  of the
Amiga:

To  attach other  RGB  monitors,  see your Amiga  dealer for the  correct cable
and  instructions.

2-8         Setting  up  the  Amiga



Attaching an NTSC Monitor

To  attach  an NTSC monitor or  a television  with  an  NTSC  connector to  the
Amiga,  use  a  shielded  cable  with  a pfeono pjug  at  each  end.    (You  can  get
this  cable  from  your  Amiga  dealer.)     Plug  one  end  of  the  cable  into  the
appropriate  connector  on  the  monitor,  then  plug  the  other  end  into  the
NTSC  connector  on  the  back  of  the  Amiga:

Attaching  a Television

To  use  a  conventional  television  as  a  monitor,  you  need:.

•     a,Tvmodulator

•     a. Tv modulator  cable

•      a, TV  switch  box

You   can   get   these   from   your   Amiga   dealer.      You'll   find   instructions

packaged  with  them.

Setting  up  the  Amiga         2-9

EE

RE

`-



`-

`-

IRE

Connecting Audio Equipment

The  Amiga produces  high-quality  stereo  sound.    There  are  two  connectors
on  the  back  of the  Amiga  for  connecting  the  Amiga  to  audio  equipment:

Audio  Connectors

Unless  you've  attached  a  conventional  television  to  the  Amiga  with  a  TV
modulator,  you need to connect the Amiga to  either an  audio  system or the
audio  connector  found  on  some  monitors  to  hear  sounds  produced  by  the
Amiga.

Connecting  the Amiga  to  a  Stereo  System

To connect the Amiga to a stereo  system,  you need two cables.   Each cable
must on one end have a plug that fits the  input connector  on your amplifier
or  receiver  (this  is  most  often  a  phono  plug)  and  on  the  other  end  have  a
phono  plug  to  fit  into  the  Amiga.

2-10         Setting  up  the  Amiga



9Zu¥:,:ttsote:eh:cshys;::S:t::ce:eoanr: ::tdraoLfn:::Sri ::tbeLne.Lab6Lne:h"eA:::L±a:I"t::         u
Amiga  are  two  ciwdz.o  conneccors,  one  for  the  left  audio  signal  and  one  for
the   right   audio   signal.      Insert   the   other   end   of   each   cable   into   the
appropriate  audio  connector:

Sound  Connections  for Monitors

Some  monitors,  including the  Amiga  Monitor,  have  a built-in  speaker.   To
connect  a  monitor  for  sound,  you  need:

•      a  "y"  c!dczpfer  that  converts  the  two  stereo  channels  from  the
Amiga  to  a  single  channel

•     a  cable for  connecting the  "Y"  adapter to  the  audio  connector
on  the  monitor

You  can  get  "Y"   adapters  and  connecting  cables  from  many  stores  that
carry  radio  and  electronic  parts.

Setting  up  the  Amiga         2-11

'-

EE



-

`-

`-

To  connect  the  monitor,  insert  the  two  phono  plugs  at  the  top  of  the  "Y"
into  the  audio  connectors  on  the  back  of  the  Amiga:

Finally,  connect  the  other  end
of    the     cable     to     the     "Y"
adapter,

2-12         Setting  up  the  Amiga



Plugging  It In

You're almost done putting your Amiga together.   Before you plug it in and
turn  it  on,  make  sure  there's  nothing  covering  the  ventilation  slots  on  the
back  or  bottom  of  the  main  unit:

Ventilation  Slots Ventilation  Slots

Plug  the  six-sided  end  of  the  power  cord  into  the  main  unit:

Plug  the  other  end  of  the  power  cord  into  a  grounded  outlet,  and  you're
ready  to  start  using  your  Amiga.

Setting  up  the  Amiga         2-13

`-

-

`-



-

`-/

`-
;



Chapter3   u

Getting Started

In this  chapter,  you'1l learn the basics  of using your Amiga.
When  you're  done,  you  can  start  using  the  foojs,   such  as
the  Grc}pfoj.crcz/f "  color graphics tool,  that let you work with
the  Amiga.

A Note About the Mouse

The descriptions in this  chapter  (and throughout the  rest of
this  manual)   assume  you're  using  a  mouse.     There   are,
however,  certain keys  on the keyboard you can use in place
of the  mouse.   To  learn how,  see the  sections  "Moving the
Pointer  Without  a  Mouse,"  "Selecting  Without  a  Mouse,"
and  "Using  Menus  Without  a  Mouse"  in  this  chapter.

Getting  started         3-1

-.



Using  Disks

Start  by   getting  the  three   microdisks-the   K!.cksfc}rf  d!.sk,   the   Workbencfe
d!.sk,  and the Exfrcis disk-that came with your Amiga.   These  disks  contain
important  information  used  by  the  Amiga.    In  addition,  have  three  blank
microdisks ready.    (You can get blank microdisks from your Amiga dealer.)
You'll  copy  the  information  from  the  original  disks  onto  these  blank  disks
and  keep  the  originals  in  a  safe  place.

Your  original  Amiga  disks  may  have profecf  fc!bs.    These  are  small  plastic
tabs on the backs of the disks.   If you find protect tabs on the original disks,
slide  each tab  toward the  edge  of the  disk until  it  clicks  into  place.    When

you  do,  you'll  be  able  to  see  through  a  small  hole  in  each  disk:

\-.-.

EE

ERE

Disk  is  protected

By putting the protect tabs  in this  position,  you prevent the  information  on
the  disks  from  being  changed  while  they're  in  the  Amiga.

3-2         Getting  started



On  each  of the three blank disks,  make  sure  that the  protect tab  is toward
the  middle  of  the  disk,  so  that  it  covers  the  hole.     With  the  tab  in  this           `\J
position,  you  can  add  new  information  to  a  disk:

Disk  is  unprotected

The  On/Off  switch  is  on  the  left  side  of  the  main  unit.     To  turn  on  the
Amiga,  press  the  end  of  the  switch  labeled  ``1":

A  word  of  warning:

Whenever you turn off the Amiga,  always wait AT LEAST 5 seconds
before  turning  it  on  again.    If  you  don't  observe  this  precaution,  you
may  damage  the  Amiga.

Getting  started         3-3

`-

I-



`-

-/

ERE

Next,  turn  on  the  monitor  or  television  attached  to  your  Amiga.    In  a  few
moments,  you'll  see  a  picture  of  a  hand  holding  a  Kickstart  disk:

This   is   your   cue   to   insert  the   Kickstart   disk-metal   end   in,   label   side
up-into  the  d!.s*  dr!.ve,  the  device  that  reads  information  from  disks  and
adds  information  to  them.    Push  in  the  disk  until  it  clicks  into  place:

3-4         Getting  started



After you put in the  disk,  you'll  hear  sounds  from  the  Amiga.    These  are
the  sounds  the  disk  drive  makes  as  it  gathers  information.    In  less  than  a
minute,  the  Amiga  will  get  the  information  it  needs-with  the  help  of  the
disk  drive-from  the  Kickstart  disk.     Notice  that  while  the  disk  drive  is
working,  the  disk  drive  light  ±s  on..

Disk  Drive  Light

A  word  of  warning:

NEVER remove a disk when the disk drive light is  on.

The disk drive light tells you that the Amiga is using the disk.   Taking a disk
out too  soon may  make  it impossible  for the  Amiga to  finish  an  important
task.  such as reading the information from the Kickstart disk.   Even worse,
taking a disk out too early may ruin the information on a disk.   Always wait
for  the  disk  drive  light  to  turn  off before  you  remove  a  disk.

Getting  started         3-5

`-`

`-

`-



-

IRE

-

When  the  Amiga  is  finished  with  the  Kickstart  disk,  the  disk  drive  light
turns  off  and  the  hand  reappears,  this  time  holding the  Workbench  disk:

Take  out the  Kickstart  disk  by  pressing the  button  on  the  front  of the  disk
drive,  then  insert the  Workbench  disk.    In  a  few  moments,  you'll  see  the
Vvorkbench:

3-6         Getting  started

Title  Bar

Icon  f or
Workbench
Disk



At the top  is  a  f!.fJe bc2r that identifies the  Workbench.    On the  Workbench
is an !.con,  a small picture that represents the Workbench disk.   You'll learn
more  about  icons  later  in  this  chapter.

Moving the Pointer

You  use  the  Po!.r}fer,  the  small  arrow  on  the  display,  to  po!.nf  to  the  things

you  want  to  work  with.    Moving  the  mouse  moves  the  Pointer.    Without
pressing  either  of  the  moctse  bwffons.  on  top  of  the  mouse,  try  rolling  the
mouse.    Be  sure  to  hold  the  mouse  as  shown  below:

Getting  started         3-7

`-

RE



Oi_e

-

-

To point,  move the Pointer so that its tip is over the thing you want to point
to:

When  you  first  use  the  mouse,  don't  worry  if it  feels  a  bit  clumsy.    Once
you're  familiar  with  it,  you'll  find  that  using  the  mouse  is  very  quick  and
convenient .

If you run out of room for your mouse before you get the  Pointer where you
want  it,  just  lift  the  mouse  and  put  it  down  where  there's  more  room.
Lifting the  mouse  doesn't  move  the  Pointer.

Moving the Pointer Without a Mouse

To  move the  Pointer  without  a mouse,  ho/d  down  either  of the  Am!.ga  keys
while  you  press  a  cwrsor  *ey..

3-8         Getting  started



Amiga  Keys                   Cursor  Keys

With  an  Amiga  key  held  down,  the  Pointer  moves  in  the  direction  of  the
arrow  on  top  of  the  cursor  key  you  press.    The  longer  you  hold  down  the
keys,  the faster the  Pointer moves.   To make the  Pointer move  even faster,
hold  down  both  the  SHIFT key  and  an  Amiga  key  while  you  hold  down  a
cursor  key.    To  stop  moving  the  Pointer,  rejeczse  the  cursor  key.

Selecting  Icons

You  use  the  SeJecfj.on  bctffon,  the  left  button  on  the  mouse,  to  fejecf  icons
and  other  features.    Try  selecting  the  icon  for the  Workbench  disk:

HIP       Point to  the Workbench  disk  icon,  then  c/i'cA  (press  and  quickly
re/ease)  the  Selection  button:

Getting  started         3-9

`-

EE



`-

RE

`-

The icon for the Workbench disk is fe!.gAj!.gAfed to  indicate that it's  selected.

Selecting Without a  Mouse

To  select  an  icon  without using a  mouse,  first point to  the  icon,  then press
both  the  left  Amiga  key  and  the  left  ALT key  at  the  same  time:

Left  ALT  Key             Left  Amiga  Key

3-10          Getting  started



Anything you do by pressing the Selection button on the mouse you can also
do  by  pressing the  left  Amiga  key  and  the  left  ALT key  at the  same  time.

Using Menus

For most tools,  including the  Workbench,  there  are  menws that  list  choices
you  can  make.    To  use  menus,  you  use  the  A4enw  bwcfon,  the  right-hand
button on the mouse.   The best way to learn how menus  work is to try one:

DEg-       Select   the   icon   for   the   Workbench   disk   if   it   isn't   already
selected.

DE? Hold   down   the   Menu   button.      When   you   do,   the   Menu   Bar
appears.    In  the  Menu  Bar  are  ft'f/es  of  menus:

Getting  started         3-11

-

ERE

`-



DEBb`-

`-

-

Without  releasing the  Menu  button,  point to the title Workbench
in  the  Menu  Bar.    The  Wowhbench  menu  appears:

Menu  Titles

HEP      While   keeping   the   Menu   button   down,   point  to   Open   in   the
menu.    Open  is  highlighted:

3-12         Getting  started



Dgr Choose   Open   by   releasing   the   Menu   button   while   Open   is
highlighted .

By choosing the  Open item from the Workbench menu,  you open  a w!.„dow
for  the  Workbench  disk:

Window  for
Workbench
Disk

In the window,  you see icons that represent the  contents  of the  Workbench
disk.

If you  decide  you  don't want to  choose  a  menu  item,  move  the  Pointer  off
the  menu  before  releasing  the  Menu  button.

To  browse  through  a  tool's  menus,  just  hold  down  the  Menu  button  while
moving the  Pointer along the  Menu  Bar.    Without  choosing an item,  you'1l
get  to  look  at  the  menu  items  that  are  available.

Getting  started         3-13

EE

`\J



Using Menus Without a Mouse

Just as pressing the left Amiga key and the left ALT key at the same time  is
like  pressing  the  Selection  button,  pressing  the  right  Amiga  key  and  the
right  ALT key  at  the  same  time  is  like  pressing the  Menu button.    To  use
menus without a mouse,  hold down the right Amiga key and right ALT key
while you move the Pointer with the cursor keys.   When the menu item  you
want  is  highlighted,  release  the  right  Amiga  key  and  right  ALT  key.

Duplicating Your Disks

It's   important   to   make   duplicates   of   your   original   disks   and   keep   the
originals  in a safe place.   You  then use  the  duplicates,  called  wor*j.ng d!.sks',
for everyday use.    Before  you  do  anything else  with the  Workbench,  follow
these  directions  for  duplicating  disks:

-

-

DP     fsr:I:C:ht:eJ::knb:°nrcthhem#ur:kbench disk.  then choose Duplicate

3-14         Getting  started



A   req"es!er   appears.      A   reqttesfer   is   something   the   Amiga   uses   to
communicate  with  you.     Here,  the  requester  tells  you  how  many  times
you'1l  have  to  change  disks  as  you  copy.    Select  Continue  to  go  on:

A new requester  asks  you to put the  disk you  want  to  duplicate  in  drive  0.
(Drive  0  is  the  disk  drive  in  the  main  unit.     Drive   1  is  an  external  disk
drive.)    Since the Workbench  disk is  already in  drive  0,  select  Continue  to
80  On:

Getting  started         3-15

-,

`-

`-



-

-,

RE

Next  you'll  see  a  requester  that  asks  you  to  insert  the  disk  to  receive  the
copy.    Take  out  the  Workbench  disk,  insert  one  of  the  blank  disks,  then
select  Continue.

Finally,  there is  a series  of requesters that ask you to  exchange disks.   Insert
the  disk  each  requester  asks  for,  then  select  Continue.

When you've finished  copying the  disk,  remove the  copy  and  label  it  using
one  of  the  self-adhesive  disk  labels  packaged  with  new  disks.

Copy the  other two disks in the  same way:   insert the  disk you want to  copy,
select the  icon  for  the  disk,  choose  Duplicate  from  the  Workbench  menu,
then  follow  the  instructions  in  the  requesters.    Be  sure  to  label  the  copies
when  you're  finished.

When you've  made  copies  of  all three  disks,  put the  original  disks  in  a  safe

place  and  use  only  the  working  disks.    That  way,  if  you  lose  or  damage  a
working  disk,  you'll  be  able  to  make  another  copy  from  the  original.    To
learn  about  proper  care  for  your  disks,   see   Chapter   6,   "Caring  for  the
Amiga.„

Before going on,  you  need to  insert the  newly  copied  Workbench  disk,  then
7-es.ef the Workbench.   To reset,  make sure the disk drive light is off,  hold
down  the  CTRL  key,  the  left  Amiga  key,  and  the  right  Amiga  key  at  the
same time  for at  least  half a  second,  then  release the  keys.   When  you reset
the  Workbench,  you  clear the  Amiga's  memory-the  electronic  circuits  the
Amiga  uses  to  store  information-then  the  Workbench  reappears.    You're
back  to  where  you  were  when  you  first  inserted  the  Workbench  disk.

Two  warnings:

NEVER  reset the Workbench  when  a disk drive  light  on.    Resetting
when  the  light  is  on  may  damage  the  information  on  the  disk.

When you reset the Workbench,  any work that has not been saved  to
disk  is  lost.    When you  begin using the  tools  on  the  Amiga,  remember
to  save  your  work  before  you  reset.

3-16          Getting  started



Using a Tool:   Preferences

With  the  Pre/ere"ces.  tool,   you  can  make  a  number  of  changes  to  your
Amiga.    In  Chapter  7,  you'll  find  a  complete  list  of  Preferences  settings.
Here,  you'll learn how to start using Preferences,  how to use  Preferences to

get the most from your monitor,  and what to  do  when you're finished using
Preferences .

DEF. Select  the   icon   labeled   "Copy   of  Workbench,"   then   choose
Open  from  the  Workbench  menu.    When  the  Preferences  icon
appears,   select   it,   then   choose   Open   from   the   Workbench
menu.    A  window  for  Preferences  appears:

Tools  use  windows  to  display  information  and  to  accept  information  from

you.        The    Preferences    window    shows    you    the    current    settings    for
Preferences  and  lets  you  change  them.

Getting  started         3-17

`-

`-

-



`-

EE

EE

At  the  left  of  the  Preferences  window,  you  set  the  number  of  chc}rc!cfer6.

(letters,  numbers,  and symbols) that appear on each line of the display.   To
the  right  of  the  word  Text  are  two  gczdgefs,  one  marked  60  and  the  other
marked  80.    If  you're  using  an  Amiga  Monitor  or  another  RGB  monitor,
select  80.     If  you  have  an  NTSC  monitor  or  television  attached  to  your
Amiga,  select  60.

When you're done,  select Save to save your choices on the Workbench disk
and  return to  the  Workbench:

Creating a Project

You'll use most Amiga tools to create pro/.ecfs.   One  example of a project is
a   note   you   write   with   the   IVofepczd,   a   tool   that   is   included   on   your
Workbench  disk.    Here's  how  to  write  a  note:

PEP Select the Utilities drawer on the Workbench,  then choose Open
from  the  Workbench  menu:

3-18         Getting  started



In  the  window  that  appears,  you'11  see  the  icon  for  the  Notepad:

HEr       Open  the  Notepad  by  selecting  its  icon,  then  choosing  open
from  the  Workbench  menu.

Getting  started         3-19

`-

`.-

\-



-

`-

-'`

You  can  also try  another,  quicker way to  open  a tool:   point to the  icon  for
the  tool,  then  dowbje-cJ!.ck  the  Selection  button.    To  double-click,  quickly

press  and  release  the  Selection  button  twice.

In  a  few  moments,  a  window  for  the  Notepad  appears:

Using  the  keyboard,  type  in  your  note:

3-20         Getting  started



=:t::Vaed y;Lrnrd::teL: ::L°e°c::d:ayv:uqLS sf::mm:hneusp;:ietc±emNe:tue.pa£BfencapT::etho:          `\~
the  Workbench  menus.)     Select  the  box  that  appears  to  the  right  of  the
word  ``Name:",  type  in  a  name  for  your  note  (the  name  can  be  up  to  25
characters  long),  press  the  RETURN  key  on  the  keyboard,  then  select  the
OK  gadget.

When you're done,  choose  Quit from the  Project menu.   The next time you
open  the  Utilities  drawer,  you'll  see  a  new  icon.    This  is  the  icon  for  your
note:

If  you  want  to   get  back  your  note,   open  it  by  pointing  to   its   icon  and
double-clicking  the   Selection  button.     When  you  reopen  your  note,   the
Notepad  is  also  reopened.    You  can  then  add  to  or  change  the  note.

Now  that  you're  acquainted  with  the  Workbench,   menus,   and  projects,
you're ready to  use  other  Amiga tools.    Take  time  now to become  familiar
with  one  or more  of the tools.   When you're  done,  read  Chapter  4 to  learn
the  many  other  things  you  can  do  with  the  Workbench.

Getting  started         3-21

``~`

`-



RE



Chapter4    u

`,-.

Using the Workbench

The Workbench is a tool you use to control the Amiga.   This
chapter describes the Workbench and the tasks you perform
with  it.

Using the  workbench         4-1



What Is the Workbench?

The  Workbench  is:

•      a tool  you use  to  control the  Amiga.    You  open  the  Workbench

by  inserting  a  disk,  called  a  WorkbencA  d!.sk,  that  contains  the
Workbench  tool.

•      an  area  of the  display-a 6.creen-set  aside  for the  Workbench.

What's on the Workbench?

When  you  open  the  Workbench  disk,  here  are  the  things  you  see  on  the
Workbench  screen:

Workbench
Screen

`-

-

`-

Drawer  loon                 Tool  loon                Trashcan  loon

4-2         Using the  workbench



Icons

Icons  are  small  pictures  that  appear  on  the  Workbench.    They  represent:

•     tools

•      projects

•      disks

•      drczwers,   places   where   you   keep   tools,   projects,    and   other
drawers

•      the   TrczsAcczn,   which   you   use   to   discard   tools,   projects,   and

drawers

Windows

Windows   let   you   see   the   contents   of   projects,   drawers,   disks.   and   the
Trashcan.   Each window has a 7l.f/e Bc!r at the top to identify it.   In addition,
a  window  may  have  one  or  more  gczdgefs  that  let  you  change  what's  being
displayed  or  that  let  you  communicate  with  a  tool.     Gadgets  are  described
later  in  this  chapter  in  the  section  "Workbench  Operations."

Screens

On  the  Amiga,  the  way  visual  information  is  displayed  can  be  different  for
different   tools.       To   change   the   display,    tools   request   different   w.deo
czcfr!.bc{fes.     These  attributes  include:

Using the  workbench         4-3

-

UEE

-'



ORE

`-

RE

•     horizontal  resolution,  the  number  of p!.xeJs that  appear  on  each
line  of the  display

•     number  of  colors  displayed  in  the  screen

•     color  palette,  the  colors that  appear  in  the  screen

•     interlace,   which  doubles  the  number   of  horizontal  lines  that
appear  in  the  screen

Screens  are  areas  of  the  display  with  the  same  video  attributes.    They  are
always as wide as the display.   Each screen contains one or more windows:

Workbench  Screen

ABasic  Screen

Controlling the Workbench

This  section  explains  the  techniques  you  use  to  perform  Workbench  tasks.
You  use  many  of  these  same  techniques  when  working  with  other  Amiga
tools .

4-4        Using the workbench



Pointing

To  move  the  Pointer,  you  move  the  mouse:

You  poj.nf  to  something  by  moving  the  Pointer's  po!.nf  over  it:

Using the  workbench         4-5

`-

`-

`-



`-

`-,

`-

There  are times  when you must wait for the  Workbench to  finish  an  activity
before you can continue.   When this happens,  the Pointer changes shape and
becomes  a  Wait  Pointer..

Wait  Pointer

When  the  Pointer  returns  to  its  original  shape,  you  can  continue  working.

Selecting

To   select   an  icon,   point  within  it,   then   click  the   Selection  button,   the
left-hand  button  on  the  mouse:

4-6         Using the  workbench



If you  no  longer  want  an  icon  selected,  point  to  a  place  on  the  Workbench
that  isn't  occupied  by  an  icon  or  gadget,  then  click  the  Selection  button.

Ex/e"ded  Sejecf!.on  is  a  technique  for  selecting  more  than  one  icon  in  the
same operation.   To use it,  hold down the  SHIFT key while you select icons.
Release  the  SHIFT  key  when  you're  done  selecting:

Using the  workbench         4-7

`-

-I

I-



Dragging

You move icons,  windows,  and  screens by dragg!.ng them.   To  drag  an  icon,
you point to it,  hold down the Selection button,  and move the mouse.   When
you  hold  down  the  Selection  button,  the  Pointer  changes  shape:

'iEE

-

-.

When  you  release  the  Selection  button,  the  icon  reappears  where  you've
positioned  the  Pointer.

To  learn  how  to  drag  windows  and  screens,   see  the  section   "Workbench
Operations"  at  th.e  end  of this  chapter.

Choosing Menu Items

Most   tools,   including   the   Workbench,   provide   menus   from   which   you
choose things you can do with the tool.   To see the menus that are available,
you press the Menu button,  the right-hand button on the mouse.   When you
do,   the  titles  of  available   menus   appear  in  the   Menu   Bar,   a   strip   that
replaces  the  Title  Bar  in  the  screen  in  which  you're  working:

4-8         Using the  workbench



Menu  Titles

Menu  Bar

To choose a menu item, hold down the Menu button and move to the title of
a  menu.    The  menu  appears:

Using the  workbench        4-9

`-

EE

``-



Now  point  to  the  item  you  want  to  choose  and  release  the  Menu  button:`-,

``---.

-

In  menus,  there  are  two  kinds   of  items.     Com77tcz"d5'  are  items  that  you
choose to perform an action.   One example of a command is the  Open item
in the Workbench menu.   You choose  Open to  open  a window.    Opf!.o„s  are
choices   that  persist   until   you   choose   other,   mutually   exclusive   options.
Examples  of  options  are  the  type  styles  available  in  the  Amiga  Notepad.
Options you've  chosen  are  indicated by check marks to the left of the  menu
items:

4-10         Using the  workbench



In some tools,  not all menu items are available at all times.   Menu items that

you  cannot  choose  appear  as  gfec)sf  c.fems...

Ghost  Item

Using the  workbench         4-11

-

RE

`-



-/

``~

ERE

^4ttJc!.pje  Choc.ce is a technique for choosing more than one menu item in the
same  operation.     To  use  it,  hold  down  the  Menu  button,   then  click  the
Selection button with the Pointer over each of the  items you want to  choose:

When  you're  done  choosing,  release  the  Menu  button.

Shortcuts

A  sfeorfcwc  is  a  quick  way,   from  the  keyboard,   to  select  something  or  to
choose   a   menu   item.      For   a  seJecf!.on  sfeorfcwf,   you  press   a   key   on   the
keyboard while holding down the left Amiga key  (the key immediately to the
left   of  the   Space   Bar).      For   a   menw   sfeorfcctf,   you   press   a   key   on   the
keyboard  while  holding  down  the  right  Amiga  key.

Selection  shortcuts  for  the  Workbench   are   described  in  the   "Workbench
Operations"  section  at  the  end  of  this  chapter.

4-12         Using the  workbench



Using the Amiga Without a Mouse

On the Amiga,  anything you can do with the mouse you can also do from the
keyboard:

•     To move the  Pointer,  press an Amiga key and one  of the cursor
keys  (the  keys  with  arrows  on  top  that  are  to  the  right  of  and
slightly below the  RETURN key)  at the  same  time,   This  moves
the Pointer in the direction of the  arrow  on the  cursor key.   The
longer  you  hold  down  these  keys,  the  faster  the  Pointer  moves.

•      To move the pointer faster, press an Amiga key,  the  SHIFT key,
and  one  of the  cursor  keys  at  the  same  time.

•      Instead  of  pressing  the  Selection  button  (the  left  button  on  the
mouse),  you  can press the  left  Amiga  key  and the  left  ALT key
(the  key just to the left of the  left Amiga key)  at the  same  time.

•      Instead  of  pressing  the  Menu  button   (the  right  button  on  the
mouse),  you  can  press  the  right  Amiga  key  and  the  right  ALT
key  (the key just to the right of the right Amiga key)  at the  same
time.

Workbench Operations

Using   the   techniques   described   in   the   last   section,    you    can   use   the
Workbench  to  work  with  tools,  projects,  drawers,  and  disks.    This  section
describes  the  fundamental  Workbench  operations.

Using the  workbench         4-13

`-,

\-/

-



Operations  Involving Tools  and  Projects`-

`-

EE

Opening  Tools  and  Projects

When  you  open  a  tool  or  project,  you  open  a  window  that  lets  you  see  the
contents of the project or that lets you communicate with the tool.   There  are
two  ways  to  open  a  tool  or  project:

•      Select  the  icon  for  the  tool  or  project,  then  choose  Open  from
the  Workbench  menu.

•      Point  to  the  icon,  then  double-click  the  Selection  button.

Opening  a  project  automatically  opens  the  tool  used  to  create  it.

On the Amiga,  you can have more than one tool open at the same time.  This
ability  is  called  mwJfz.fc}sk!.„g..    the  Amiga  is  able  to  perform  several  tasks  at
once.      Note,   however,   that   each   new   tool   you   open   requires   a   certain
amount  of  memory.     Memory  is  the   set  of  electronic   circuits   within  the
Amiga  used  to  keep  information.     If,  when  you  try  to  open  an  additional
tool,   there   isn't   sufficient   memory   for   it,   the   Workbench   gives   you   the
message   "Cannot  open   [name  of  the  tool].     Error   103"   at  the  top  of  the
screen.

Duplicating  Tools  and  Projects

Duplicating a tool  or project means to  make  an  identical  copy  in  the  drawer
in which the tool or project resides.   To duplicate,  select the icon for the tool
or  project,  then  choose  Duplicate  from  the  Workbench  menu.

The  name  of the  new  tool  or project  is  "copy  of"  added  to  the  name  of the
tool  or  project  that  was  copied.     For  example,  duplicating  the  Clock  gives

you  a  new  tool  named  "copy  of  Clock."

4-14         Using the  workbench



Renaming Tools  and  Projects

To  rename  a tool  or project,  select its  icon,  then  choose  Rename  from  the
Workbench  menu.    When  the  message  appears  in  the  Title  Bar,  select  the
gadget  in  the  middle  of  the  display,  type  in  the  new  name,  then  press  the
RETURN  key.

About  String  Gadgets.    The  gadget that  appears  is  called  a  Sfr!.ng  Gczdgef .

(The term sfr!.ng refers to  a  set  of one  or more  characters.)    As  you use  the
Amiga,   you'1l  find  that  String  Gadgets  appear  in  requesters  when  a  tool
needs  information  in the  form  of text.    When  you  use  String  Gadgets,  note
that you can change the string that appears in the gadget.   Press the DEL key
to  delete  the  characters  at  and  to  the  right  of the  re:*f  Cwrsor  (the  marker
that appears  in the  gadget).  Press the  BACKSPACE key to delete  characters
to  the  left  of the  text  cursor.  You  can  erase  what  appears  in  the  gadget  by

pressing the  right  Amiga  key  and the  X  key  at the  same  time.    You  can  get
back  what  was  in  the  gadget  before  you  made  any  changes  by  pressing  the
right  Amiga  key  and  the  Q  key  at  the  same  time.

Getting  Information  About Tools  and  Projects

To  get  information  about  tools  and  projects,  select  the  icon  for  the  tool  or
project,   then  choose  Info  from  the  Workbench  menu.     The  information
includes   the   type   (project,   tool,   drawer,   or   disk)   of   the   object   you've
selected,  as  well  as  various  measures  of its  size  (note  that  some  of these  are
only  of  interest  to  software  developers  and  others  who  must  deal  with  the
inner workings  of the  Amiga).   You can  also  change  the sfacws  of the  object
by selecting one of the gadgets below the word STATUS.   The normal setting
is   DELETABLE,   which   allows   you   to   delete   an   object.       Select   NOT
DELETABLE  if  you  want  to  prevent  an  object  from  being  deleted.

Discarding  Tools  and  Projects

To  discard  a tool  or project,  drag its  icon  over a  Trashcan icon.    When  you
do,   the   tool   or   project   is   kept   in   a   special   drawer   maintained   by   the
Trashcan.   It remains in this  drawer until  you select the Trashcan icon,  then
choose  Empty Trash from the  Disk menu.    If you  haven't  emptied  the  trash
since  you  last  put  something  in  the  Trashcan,   you  can  retrieve  what  you
discarded by opening the Trashcan in the same way you open a project,  then
dragging its icon to an open drawer somewhere on the Workbench.  Note that

Using the  workbench         4-15

`-,

EE

`-,



-

EE.

`-

when you discard something,  you do not reclaim disk space until you choose
Empty  Trash.

You can also discard a tool  or project by selecting its  icon,  choosing Discard
from the Workbench menu,  then selecting the  Retry  gadget in the  requester
that appears.   WARNING:   When you choose Discard  to discard a tool  or
project,  you  cannot  get  the  tool  or  project  back.

Operations  Involving  Drawers

Drawers  are  places  where  you  can  keep  tools,  projects,  and  other  drawers.
You  can use  drawers  to  keep  order  on  the  Workbench  and  to  keep  related
items  together.

Opening  Drawers

You open a drawer in the  same way you  open  a tool  or project:   either point
to the icon for the  drawer and double-click the  Selection button or select the
icon for the drawer, then choose Open from the Workbench menu.   Opening
a  drawer  gives  you  a  window  in  the  Workbench  screen.

Moving  Tools,  Projects,  and  Drawers

To  move  a tool,  project,  or  another  drawer  into  a  drawer,  open  the  drawer
into  which  you  want  to  put  the  tool,  project,  or  drawer,  then  drag the  icon
into  the  drawer's  window:

Another  way to  move  a  tool,  project,  or  another  drawer  into  a  drawer  is  to
drag  the  icon  over  the  icon  for  the  drawer  into  which  you  want  to  put  it.

4-16         Using the  workbench



Duplicating  Drawers

To  duplicate a drawer,  select the icon for the  drawer,  then choose  Duplicate
from the Workbench menu.   A new drawer,  whose name is  "copy of"  added
to  the  name  of the  drawer  that  was  duplicated,  appears  in  the  window.

To  create. a new drawer,  you duplicate  another drawer.   The  quickest way is
to duplicate the empty drawer that appears on the Workbench,  then give the
new  drawer  a  new  name.

Renaming  Drawers

To  rename  a  drawer,  select  the  icon  for  the  drawer,  then  choose  Rename
from the Workbench menu.    A message  then  appears  asking you  for  a  new
name.     Select  the  window  that  appears,   type  in  a  name,  then  press  the
RETURN  key.

Discarding  Drawers

To discard a drawer,  drag the icon for the  Drawer over the Trashcan icon or
choose  Discard  from  the  Workbench  menu.    Note  that  putting  a  drawer  in
the  Trashcan  does  not  free  disk  space  until  you  choose  Empty  Trash  from
the  Disk  menu.

You can also discard a drawer by selecting the  icon for the  drawer.  choosing
Discard  from  the  Workbench  menu,  then  selecting  Retry  in  the  requester
that appears.   WARNING:   When you choose Discard to discard a drawer,
you  cannot  get  the  drawer  back.

Special  Drawers:    Disks  and  the  Trashcan

Disks and the Trashcan are special kinds of drawers.   Disks differ from other
drawers  in  these  ways:

•      You cannot discard a disk by dragging its icon over the Trashcan
icon.

•      You  cannot  move  a  disk  into  another  drawer.

Using the  workbench         4-17

RE

`-

`-



`-

-`

``_

The  Trashcan  differs  from  other  drawers  in  these  ways:

•     You  cannot  move  the  Trashcan  into  another  drawer.

•     You  cannot  discard  the  Trashcan.

•     You   can   remove   the   contents   of  the   Trashcan   by   choosing
Empty  Trash  from  the  Disk  menu.

Operations  Involving Windows

When  you  open  a  tool,  project,  drawer,  disk,  or  the  Trashcan,  a  window
appears  on the  Workbench.   This  newly  opened  window  appears  in  front  of
any  other  windows  with  which  it  overlaps.

Windows appear within  screens.   They  cannot be  moved  from  one  screen to
another.  While all the windows in a screen can display information,  only one
window  can  accept  information  from  you  at  a  time.    This  window  is  called
the  selected  window.

To   select   a   window,   point   anywhere   within   the   window   and   click   the
Selection  button.

You  change  the  size  of  a  window,  change  what's  displayed  in  the  window,
move   the   window,   and   do   other   things   with   windows   with   the   help   of
gadgefs.    You  also  use  gadgets  to  communicate  with  tools.    Here  are  some
common  gadgets  found  in  windows:

4-18         Using the  workbench



Close  Gadget     Drag  Bar      Back  Gadget         Front  Gadget

Scroll  Bar

Sizing  Gadget

Windows  can  contain  all,   some,   or  none  of  these  gadgets.     In  addition,
windows  can  contain  other  gadgets  needed  for  a  particular  tool.

Like  menu items,  gadgets  in  a  window  can  appear  as gAosf gc!dgecs.    Here,  a

ghost  Drag  Bar  indicates  that  the  window  is  not  selected:

Using the  workbench         4-19

-`

I-

-



`-

ERE

EE

Dragging Windows

You  drag  a  window  by  pointing  anywhere  in  the  window's  Title  Bar  that  is
not  occupied  by  other  gadgets  (the  Drc}g  Bc}r),  holding  down  the  Selection
button,  and  moving the  mouse:

Sizing  Windows

To  change  the  size  of  a  window,  you  drag  its  Sz'zj."g  Gczczgef ..

Note  that  some  windows  have  a  maximum  size  that  is  smaller  than  the
screen  in  which  they  reside.

4-20         Using the  workbench



Moving  Windows  in  Front  of  Other Windows

When  windows  overlap,   one  window  appears  in  front  of  the  others.     To
move  a  window  in  front  of  other  windows,  select  the  Frorif  Gczdgef ..

You can also move a window to the front by pointing to the icon you selected
to  open  the  window,  then  double-clicking  the  Selection  button.

Pushing  Windows  Behind  Other Windows

To  move  a  window behind  other  windows  with  which  it  overlaps,  select  the
Back  Gadget:

Using the  workbench         4i21

-,

\-

`-



`-

•-/

`-/

Scrolling  the  Contents  of a  Window

For  many  windows,  you  can't  display  everything that  can  appear  within  the
window  at  once.    Because  of  this,  windows  often  have  Scro//  Bczrs  that  let
you  move  what  appears  in  the  window:

Scroll  Arrow

Scroll  Box

Scroll  Bar

Scroll  Arrow

You  can  move  half a  window  at  a  time  by  selecting  a  ScroJ/ Arrow  at  either
end  of  the  Scroll  Bar:

Pressing the  Shift  Key  while  selecting  a  Scroll  Arrow  moves  the  window  one

pixel.

4-22         Using the  workbench



ScroJj Bo;res change size according to how much can appear in  a window.    If
the  window  is  as  wide  as  what  can  appear,  the  Scroll  Box in the  horizontal           \J
Scroll  Bar  fills  the  entire  space  between  the  Scroll  Arrows:

If,  for example,  only half of what can appear is within the window,  the scroll           \J
Box fills only half the  space between the  Scroll Arrows.   The position  of the
Scroll  Box  indicates  what  part  you're  seeing:

Using the  workbench         4-23

`-



To  move  what  appears  in  a  window,  you  can  drag  the  Scroll  Box:

Selecting the  space to  either  side  of the  Scroll  Box  causes  the  box-and  the
window-to  move  in  that  direction.

`-

IRE

-

Closing  Windows

To  close  a  window,   select  the  Cjose  Gc}dgef ..

You can also close  a window for a drawer by  selecting its  icon,  then  choosing
Close  from  the  Workbench  menu.

4-24         Using the  workbench



Disk  Gauges

When  you  open  a  disk,  the  window  that  appears  has  a  di.sk  gactge  along  its
left  edge:

Disk Gauge -

This gauge shows how full the disk is.   The closer the colored center bar is to
the  top,   the   less  free  storage  space  there  is  on  the  disk.     If  the  disk  is
completely  full,  the  colored  bar  fills  the  entire  space  between  the  "E"  and
"F"  marks.

To  free  disk  space,  move  tools,  projects,  or  drawers  to  the  Trashcan,  then
choose  Empty  Trash  from  the  Disk  menu.

Operations  Involving  Screens

As   noted   earlier,   screens   are   areas   of   the   display   with   different   video
attributes.  When  a  window is  opened for  a tool,  it appears in  a  screen  whose
video  attributes  are  appropriate  for  it.

Using the  workbench         4-25

RE

EE

EE



ERE

-

-

Screens  are  always  as  wide  as  the  diplay.  and  are  no  larger than the  display.
Although  the  height  of  a  screen  is  fixed,  part  of  a  screen  can  be  off  the
display:

Screens,  like  windows,  can  contain  gadgets.    Note  that  a  window  within  the
screen  can  cover  the  screen's  gadgets.     If  this  happens,   you  must  drag  or
resize  the  window  to  reveal  the  gadgets  underneath.

Dragging  Screens

To   drag  a   screen,   point   anywhere   in   the   screen's   Title   Bar   that   is   not
occupied  by  other  gadgets  (the  screen's  Drczg  Bc}r),  hold  down  the  Selection
button,  then  move  the  mouse:

4-26         Using the  workbench



You can drag a screen  down  so that part of it is  off the bottom  of the  display.
Note  that  you  cannot  drag  a  screen  up  so  that  the  bottom  of  the  screen  is
above  the  bottom  of  the  display.

Moving  Screens  in  Front  of  Other  Screens

To  move  a  screen  in  front  of  other,  overlapping  screens,  select  the  screen's
Front  Gadget:

Using  the  workbench         4-27

\-

`-

RE



`-_-

-a

`-

For the Workbench screen,  there is a selection shortcut you can use to move
it  to  the  front:    while  holding  down  the  left  Amiga  key,  press  the  N  key.

Pushing  Screens  Behind  Other  Screens

To  move  a  screen  behind  other,   overlapping  screens,   select  the   screen's
Back  Gadget:

For the Workbench  screen,  there  is  a  selection  shortcut you  can use to push
it  to  the  back:    while  holding  down  the  left  Amiga  key,  press  the  M  key.

The Memory Meter

At  the  top  of the  Workbench  screen  is  a  memory  mef er..

4-28         Using  the  workbench



The   meter   shows   the   amount   of   free   RAA4    (rcindom-access   memory)
available  to  you.

Operations  Involving  Requesters

A reqwes/er is  an area within a window that  a tool uses to  communicate  with

you.    Here  is  an  example  of  a  requester:

Using the  workbench         4-29

`-

I-

`-



-I

ERE

-J

'@

To respond to  a requester,  you use the  gadget  or gadgets  it provides.   Among
the  gadgets,  there  are  always  one  or more  exz'f gc2c!gefs that you  select to  close
the requester.   In many requesters,  the  "OK"  gadget is  an  exit  gadget.   Many
requesters also have a  "Cancel"  gadget you  select if for any reason  you  don't
want  to  perform  an  action,

AJerfs are  messages the  Amiga provides  if there is  something seriously  wrong
with  your  Amiga  or  with  the  tools  you're  using.    Alerts  are  hard  to  ignore:
they  appear  in boxes  with  flashing red  borders.    At the  top  of  alerts  are  the
words  "Software  Failure"  or  "Not  enough  memory."

If  you  get  an  alert,  jot  the  number  at  the  bottom  of  the  box  on  a  piece  of

paper  if  you  can;  it  will  help  service  people  to  diagnose  the  problem.

Operations  Involving  Disks

Initializing  Disks

To use  a  new  disk with the  Amiga,  it  must be  !.n!.f!.czJz.zed.    If you  copy  a  disk,
the new  disk is initialized  as  it receives the  col)y.   To  initialize  a  disk without

4-30         Using the  workbench



making  a  copy,   insert  the  disk  in  a  disk  drive,   select  the   disk  icon  that
appears  on  the  Workbench,  then  choose  Initialize  from  the  Disk  menu.

Two  warnings:

Initializing  a  disk  destroys  any  previous  information  stored  on  a  disk.

Before  a  disk  is  completely  initialized,  the  disk  drive  light  will  go  out,
then,  after a brief period-from  one  to  ten seconds-it will  go  on again.
Wait  for  the  light  to  go  out  a  second  time  before  removing  the  disk.
Failure  to  do  so  may  ruin  the  disk.

Duplicating  Disks

To  duplicate a disk,  select the icon for.the  disk,  then  choose  Duplicate  from
the  Workbench  menu.     Note  that  when  you  choose  Duplicate,  the  Amiga
makes  use  of  only  one  disk  drive  even  if  there  are  two  or  more  drives.

Copying  Disks

To  copy  a  disk,  drag  its  icon  over  the  icon  for  a  disk  that  will  receive  the
copy.     If  you  have  more  than  one  disk  drive,   a  requester  will  ask  you  to
insert the  disk you  want to  copy  (the sowrce  d!.sk)  into  one  of the  drives,  and
the  disk  to  receive  the  copy  (the  desc!.nc}f!.0%  d(.sk)  into  another.     (Note  that
"drive  0"  referred  to  in the  requester  is  the  internal  drive.    ``Drive  1"  is  the

external  drive.)

Two  warnings:

Copying a disk destroys any previous information stored on the disk that
receives  the  copy.

If ,  when you  copy a disk,  you  insert  the  destination  disk  in  place of the
source  disk,  you  will  not  get  a  message  telling  you  that  you've  inserted
the  wrong  disk.    Be  sure  to  insert  the  correct  disk.

Using the  workbench         4-31

`-

RE

`-



`-,

EE

EEl

Moving  a  Tool,  Project,  or  Drawer  to  a  New  Disk

To  move  a  copy  of  a  tool,  project,  or  drawer  to  a  new  disk,  open  the  disk
you  want  to  move  it  to,  then  drag  the  icon  into  the  window  for  the  disk.

Renaming  Disks

To rename a disk,  select the icon for the disk,  then choose Rename from the
Workbench  menu.    A  message  then  appears  asking  you  for  a  new  name.
Select  the  window  that  appears,  type  in  a  name,  then  press  the  RETURN
key.

Resetting the Workbench

Reseffj.ng the  Workbench  means  to  set  it up  again.    When  you  do,  you  start
again  with  only  the  Workbench;  the  Amiga's  memory  is  cleared.    If  a  tool
malfunctions,  you  may be  forced to  reset before  you  can  resume  work.    To
reset the Workbench,  hold down the CTRL key and both Amiga keys  at the
same  time  for  at  least  half  a  second,  then  release  the  keys.

WARNING:     Always   make   sure   the  disk  drive   lights   are   off  before
resetting  the Workbench.

Other Workbench Operations

There  are  four  other  tasks  you  perform  on  the  Workbench.    You  choose
each  task-straightening  up  the  Workbench  icons,  displaying  the  last  error
message,   redrc[w.ng   the   display,   and   saving   the   positions   of   icons   and
windows-from the  Special  menu  for  the  Workbench.

Cleanup

If a drawer is open and the icon you selected to open the  drawer is  currently
selected,  choosing  Cleanup  straightens  up  icons  in  the  drawer.

4-32         Using  the  workbench



Last  Error

Choosing  Last  Error  from  the  Special  menu  displays  the  last  message  that
appeared  in the  Title  Bar  for  the  Workbench.    Messages  that  appear  in  the
Title   Bar   normally   disappear   as   soon   as   you   select   something   on   the
Workbench.     (For  explanations  of  error  numbers  that  appear  in  the  Title
Bar,  see  Appendix  8,  "AmigaDOS  Messages.")

Redraw

Choosing   Redraw   redraws   what   appears   on   the   screen.      Should   a   tool
malfunction,  it may affect what appears  in  a screen.    Choosing Redraw from
the  Special  menu  restores  what  appears  on  the  Workbench  screen  if  it  has
been  disturbed.

Snapshot

Choosing Snapshot saves on disk the positions of currently selected icons.   It
also  saves the sizes and the positions  of windows that appear when you  open
any  of the  disk  or  drawer  icons that  are  selected.    (Note,  however,  that  the
positions  of  unselected  icons  within  those  windows  are  not  saved.)

Note that you  can take  a  snapshot  of more  than  one  icon  at  a time  by using
Extended  Selection.

Workbench Tools

For  information  about  Preferences,  the  tool  you  use  to  change  many  of the
Amiga's settings,  see  Chapter 7.   To learn about the  CJock and the IVofepc!d,
see  Appendix  A,  "Workbench  Tools."

Using the  workbench         4-33

`-

-

-



`-



i

Adding to the Amiga

Chapter5    u

There  are many ways you can add to your Amiga.   You  can
make  it  more  powerful  by  adding memory  or  an  extra  disk
drive.     Tools  for  business   and  entertainment  let  you  use

your   Amiga   in   new   and   exciting   ways.      To   print   your
projects,   you  can  choose  from  several  printers,   including
color  printers.

In  this  chapter,   you'll  get  a  quick  look  at  some  currently
available  add-ons.  Complete  instructions  for  installing  and
using  these  add-ons  are  included  with  the  add-ons.     For
more   information,   and   for   many   add-ons   not   described
here,  see  your  Amiga  dealer.

Adding  to  the  Amiga         5-1

`,-



Precautions for Add-Ons

When attaching any add-on,  use only a cable that is specifically designed
for the  Amiga.   Using  a cable  that is  not  properly wired  for  the  Amiga
may  damage  the  add-on.    You  can  obtain  cables  designed  for  the  Amiga
from your Amiga dealer.   If you wish to  adapt other cables  for use with the
Amiga,  see  Chapter  7  for  information  about  the  proper  connections.

Before  you  attach  a cable to  any  of the  connectors  on the back of the  main
unit,  turn  off the  Amiga.    Attaching a  cable  when the  Amiga  is  turned  on
may  reset  the  Amiga.     (This  precaution  does  not  apply  to  the  connectors
labeled  "1"   and  "2"   on  the  right  side  of  the  main  unit;  you  can  switch
add-ons  you  attach  to  these  connectors  at  any  time.)

When  using  cables  to  attach  any  add-ons,  including  printers,  be  sure  that
the  cables  are  shielded.    Using unshielded  cables  can  cause  interference  to
radio  and television  reception.    See  Chapter  7  for  more  information  about
how  to  prevent  and  correct  interference.

Adding Memory to the Amiga

With   the   Amz.gcz   A4emory   E;tpcznsj.on   Cczr/ri.czge,    you   can   easily   add   an
additional  256K  of  random-access  memory  to  your  Amiga.    The  cartridge
slides  into  the  front  of the  Amiga  and  takes  only  seconds  to  install.    With
the  additional  memory,  you  can:

•      open  additional  tools  and  switch  quickly  between  them.

•      use  tools  that  take  advantage  of  extra  memory.     Many  tools
work  faster  when  there  is  more  memory  available.

•      use  tools  that  require  more  than  256K  of  memory.

5-2         Adding  to  the  Amiga

ERE

`-

RE



Adding  a Disk Drive to the Amiga

The   Am!.gct   Ex/er"c}J   3.i   D!.sk   Drj.ve   is   identical   in   storage   capacity   and

performance  to  the  disk  drive  built  into  the  Amiga.    To  attach  this  drive,
you  simply  plug  it  into  the  external  disk  connector   on  the  back  of  the
Amiga.    A  second  disk  drive  makes  it  easier  and  faster  to  perform  many
operations,  such  as  copying  disks.

Printers for the Amiga

There  are  five  types  of printers  you  can  use  with  an  Amiga:

•      the  Epson®  FX-80"   and  RX-80TM   and  the  CBM®   MPS1000
dot-matrix printers.   With these printers,  you can produce both
text  and  monochrome  graphics.

•      the     Alphacom®     Alphapro      101",     Brother®     HR-15XL,
Diablo®  Advantage  D25,  Diablo®  630.  and  Qume®  Letterpro
20"   letter-quality  printers.   These  print  text  identical  to  that

produced   by    high-quality    typewriters.    They    are,    however,
slower than most dot-matrix printers and  cannot print graphics.

•      the  Okimate  20"  and  Epson®  JX-80"  color printers.    To  use
the   Okimate   20   with  the   Amiga,   you   also   need   an   Okidata
"Plug 'n Print"  cartridge designed to connect the  Okimate  20 to

the  parallel  port  of  an  IBM®  PC.     The  Okimate  20  and  the
Epsom  JX-80  can print color images  from the  Amiga,  including

paintings  you  create  with  Graphicraft".

•      the  Diablo®  C-150  color  printer.    This  printer  uses  advanced
ink-jet  technology  to  produce  high-quality  color  images.

•      Hewlett-Packard LaserJet"  and LaserJet pLUS"  laser printers.

You  use  the  Preferences  tool  to  tell  the  Amiga  which  printer  you're  using
and  to  change  a  number  of  settings  that  affect  printers.     To  learn  about
Preferences,  see  Chapter  7.

Adding  to  the  Amiga         5-3

-

-

\-



`-

\-

E±B



Chapter6   u

`-

Caring for the Amiga

Your  Amiga  needs  very  little  care  to  keep  it  working  at  its
best.    Observe  the  precautions  in this  chapter to  keep  your
Amiga  in  top  shape.

Keep  the  Amiga  dry.    Keep liquids  away  from  the  Amiga
as  you work.    An  accidental  spill  can  seriously  damage  the
Amiga.

Caring  for  the  Amiga         6-1

Precautions



`--

`-

ERE

Keep the Amiga out of direct sunlight.   If the case gets too hot,  the Amiga
won't    work    reliably.         Moreover,     temperatures     above     140     degrees
Fahrenheit    (60    degrees    Celsius)    can    damage    the    Amiga's    internal
components.    Keep  it  cool.

Keep  connectors  and  the  ends  of  cables  clean.    Food,  especially  sticky
food,  is  the  worst  offender.    Any  substance  that  adheres  to  connectors  or
the   ends   of  cables   can  prevent   a   good   electrical   connection   or,   worse,
damage  the  connector.

Keep  magnets  away from  the  monitor.    Although  magnets  won't  damage
the monitor,  they can distort the video display.   In addition to more obvious
magnets,   beware   of   magnets   in   telephones,   loudspeakers,   and   electric
motors.    (Note that magnets CAN damage information on disks.   Be sure to
read  "Taking.Care  of  Disks"  at  the  end  of this  chapter.)

Don't   plug   anything   other   than   the   keyboard   into   the   keyboard
connector.    Plugging  in  anything  else  may  damage  the  Amiga.

Don't put more than 40 pounds  (18  kilograms)  on  top of the main unit.
Most  monitors  weigh  less  than  this,  but  there  are  televisions  that  weigh
more.

Don't  open  the  case.    If  your  Amiga  needs  service,  bring  it  to  an  Amiga
dealer  or  an  approved  Amiga  Service  Center.    Opening the  case  will  void
the  warranty  on  your  Amiga.

Use  the  mouse  on  a clean surface.   The ball  on the bottom  of the  mouse
must  be  clean  to  work  properly.    If  the  mouse  behaves  erratically,  it  may
need  cleaning.    The  next  section  tells  how  to  clean  your  mouse.

6-2         Caring  for  the  Amiga



Cleaning the Mouse

To  keep  the  mouse  working  properly,  give  it  an  occasional  cleaning.    To
clean  the  mouse,  you'll  need:

•      a  soft,  dry,  lint-free  cloth

•      alcohol  or  head  cleaning  fluid  for  tape  recorders

•      cotton  swabs

Cleaning the  mouse  takes just  a  couple  of minutes.    Here's  how  you  do  it:

D6Fb     Turn the mouse upside down with itscabletoward you.   Hold the
mouse in both hands and put your thumbs under the two arrows
on  either  side  of  the  ball:

Caring  for  the  Amiga         6-3

-.

'\J

\-



PEP`-

-'

E=E

With  your  thumbs,   push
firmly  in  the  direction  of
the  arrows  to  open  the
cover    for    the    mouse
ball.       With   the   mouse
upside  down,   lift  off  the

cover  with  a  fingernail:

mptphu:ym°::sheanudp:i:eer:hoew:?ean::g:::::

the  ball:

ILH In  the  opening,  you'Il  see  three  small  metal  rollers.    Moisten  a
cotton  swab with  alcohol  or  head  cleaning  fluid  and  gently swab
the  surface  of  each  roller.     Turn  each  roller  as  you  swab  to
clean  it  all  the  way  around.

PEP      With  the  cloth,  wipe  off  the  mouse  ball.     (Don't  use  any  liciuid
when cleaning the mouse ball.)   When you're done,  blow gently
into the opening  to  remove any dust,  replace the  ball,  and  slide
the  cover  for  the  ball  back  into  place.

6-4         Caring  for  the  Amiga



Taking  Care of Disks

To  protect  the  information  on  your  disks,  observe  these  precautions:

Never remove  a  disk  from  a  disk  drive  when  the  disk  drive  light  is  on.
The  disk drive  light tells you that the  Amiga  is  using a  disk.    Taking a  disk
out  too  soon  may  ruin  the  information  on  the  disk.

Keep   disks   away   from   magnets.      Microdisks,   like   audio   tapes,   store
information magnetically.    Magnets  can  ruin the information  on  a  disk.    In
addition   to   more   obvious   magnets,   beware   of   magnets   in   telephones,
loudspeakers,  and  electric  motors.

Keep  disks  dry  and  away  from  extreme  heat  or  cold.    Microdisks  are
comfortable  at  about the  same  temperatures  you  are.    Don't  leave  disks  in
direct  sunlight,  near  heat  sources,  or  in  cars  parked  in  the  sun.

Don't  touch  the  surface  of  the  disk.    A  microdisk's  metal  cover  closes
automatically  whenever  you  remove  the   disk  from  a   disk  drive.      Don't
touch  the  surface  of  the  disk  underneath  the  cover.

Make  copies  of  important  disks.    The  best  insurance  for the  information
on  a  disk is  to  make  a  copy  of the  disk  and  keep  the  copy  in  a  safe  place.
Make  a  habit  of  copying  an  important  disk  each  time  you  finish  working
with  it.

Caring  for  the  Amiga         6-5

`-

`-

-



`-

`-

-



Chapter 7    \u

`-

`-

Reference

In  this  chapter,  you'll  find:

•      a  complete  description  of  Preferences,  the  tool

you  use  to  change  many  of  the  settings  of  the
Amiga

•      descriptions      of      the      Amiga      input/output
connectors

•      information      about      radio      and      television
interference

•      specifications  for  the  Amiga

Reference         7-1



Preferences

Preferences  is  a  tool  that  lets  you  see  and  change  many  of  the  settings  of

your  Amiga.    These  are  the  settings  you  can  change  with  Preferences:

Key  Bepeat  Delay Key  Bepeat  Speed

`-

Date

Time

Serial  Baud
F\ate

Text  Size

CLI

Workbench
-        Colors

`,I

Date  and Time

Mouse  Speed

Double-Click
Delay

Printers

To  change  the  date  or  time,   first  select  the  digit  you  want  to  change  by

pointing to it,  then clicking the  Selection button.   With  a  digit  selected,  you
Can:

•      select  the  up  arrow  to  increase  the  selected  digit  by  one

•      select  the  down  arrow  to  decrease  the  selected  digit  by  one

7-2         Reference



The  leftmost  digits  of  the  date  are  the  number  of  the  month,  the  middle
digits  are  the  day  of  the  month,  and  the  rightmost  digits  are  the  last  two           '\\J
digits  of  the  year.    The  time  is  shown  using  a  24-hour  clock.

Note  that  if  any  of  the  numbers  is  as  large  as  it  can  be,   increasing  it
increases the value for the  next larger interval of time.   For example,  if the
value for the hours is  11  and the value  for the  minutes is  59,  increasing the
digit  9  for the  minutes  leaves  you  at  12:00.    Conversely,  decreasing a value
that is as small as it can be decreases the  value for the  next smaller interval
of  time.

Key  Repeat Speed

To make keys on the keyboard repeat more quickly when you hold down  a
key,  drag the arrow on the slider labeled Key Repeat Speed to the right.   To
slow  down  the  rate  at  which  keys  repeat,  drag  the  arrow  to  the  left.

Key  Repeat  Delay

When  you  hold  down  a  key  that  repeats,  there  is  a  delay  before  the  key
begins   repeating.     To   increase  this   delay,   drag  the   arrow  on  the   slider
labeled  Key  Repeat  Delay  to  the  right.     To  decrease  the  delay,   drag  the
arrow  to  the  left.

Mouse  Speed

The  three  settings  for  mowse  speed  let  you  change   how  far  the   Pointer
moves when you move the mouse.   The settings  1,  2,  and 4 are the  number
of inches  you  move  the  mouse  to  move  the  Pointer  roughly  a  third  of the
way  across  the  display.    The  larger  the  number,  the  more  room  you  need
for  the  mouse.

Reference         7-3

EE

-



- Double-Click Delay

You use the Dowb/e-CJ!.ck S/c.c!er to  set the maximum length of time between
the  two  clicks  of  a   double-click.     Drag  the   arrow   down  to   increase  the
maximum  length  of  time.     Drag  the  arrow  up  to  decrease  the  maximum
time,

Text  Size

To  make  the  best  use  of  your  monitor,   you  can  choose  the   size   of  the
characters that appear on the display.   Most NTSC monitors  and televisions
can   show   60   characters   clearly   on  each  line   of  the   display,   while   RGB
monitors  can  display  80  characters  clearly.    If  you  have  an  NTSC  monitor
or  television  connected  to  the  Amiga,  select  the  gadget  labeled  60  to  the
right  of  the  word  Text.     If  you  have  an  RGB  monitor  connected  to  the
Amiga,  select  the  gadget  labeled  80.

In  addition  to  the  Workbench,  the  Amiga  includes  another  user  interface,
the  Command  Line  Interface  (CLI).   To  make  an  icon  for  the  CLI  appear
in the  System drawer on the Workbench,  select the  ON gadget immediately
to the right  of  "CLI"  on the  Preferences  screen.    (To  learn  about the  CLI,
see  the  AmigaDOS  User's  Manual.)

VcLI

Display  Centering

To center the image on a video display,  move the Pointer into the corner of
the  I-  symbol  that  appears  in the  D!.spJc!y  Cenferi.ng  Gcidgef ,  hold  down  the
Selection button,  then move the mouse to  change the position of the image.

7-4         Reference

RE



Baud Rate

If you have an add-on connected to the serial connector of your Amiga,  you
can  change  the  bawd  rcz/e-the  rate  at  which  information  is  transferred
through the  serial  connector-by  selecting the  arrows below  and to the right
of the  words  Baud  Rate.    The  current baud  rate  is  shown to  the  left  of the
arrows.     Select  the  up  arrow  to  increase  the  baud  rate.     Select  the  down
arrow  to  decrease  the  rate.

Workbench Colors

With  Preferences,  you  can  change  any  of  the  four  colors  displayed  by  the
Workbench.    Start by  selecting the  color you  want to  change  from the  four
colors  shown.     Below  these  colors  are  three  sliders  labeled  R,   G,   and  8.
These  letters  stand  for  red,   green,   and  blue,  the  colors  that  the  Amiga
combines  to  create  the   colors   it   displays.     To   modify  the   color  you've
selected,  you  change  the  amount  of  red,  green,  and  blue  in  the  color  by
dragging  the  arrows  along  the  sliders.

Try  dragging  the  arrows  in  the  sliders  and  watch  how  the  color  changes.
With  a  bit  of  practice,  you'll  be  able  to  get  the  colors  you  want.

To  get  back the  colors  you  had  before  you  opened  Preferences,  select  the
gadget   labeled   Reset   Colors.        (To   get   back   the   original   Workbench
colors-the  ones  displayed  when  you  inserted  the  original  Workbench  disk
that  came  with  the  Amiga-select  the  Reset  All  gadget  described  below.)

Changing  the  Pointer

To  learn  how  to  change  the  Pointer  with   Preferences,   see  Appendix  C,
"Changing  the  Pointer."

Reference         7-5

\-

`-

`-



Printers
IRE

`-

-

In  this  screen,   you  can  select:

•      Printer Type.   The  names  of printers  supported  by  the  Amiga
appear in the upper right of the  screen.   To  indicate the printer
you.re using,  select  either the up  arrow  or  down  arrow until the
the  name  of  your  printer  is  highlighted.

Makers  of  other printers  may provide  information  on  disk that
allows   you   to   use   their   printers   with   the   Amiga.       If   the
instructions   for  your  printer   state  that   you   are   to   indicate   a

project  containing this  information,  select  Custom  from  the  list
of  printers,  then  select  the  gadget  immediately  to  the  right  of
the  words   Custom  Printer  Name.     Type   in  the  name   of  the

project  indicated  in  the  instructions,  then  press  the  RETURN
key  on  the  keyboard.

7-6          Reference



If  you  want  to   attach   a  printer  that  is  not  supported  by  the
Amiga and you do not have a project for it,  select custom from           \`J
the  list  of  printers,  then  enter  Generic  in  the  Custom  Printer
Name  gadget.     For  many  printers,  this  will  allow  you  to  print
plain  text,  but  not  graphics  or  extra  type  styles  such  as  italics.

•      Parallel  or  Serial  Connection.    If  your  printer  is  attached  to
the  parallel  connector  on  the  Amiga,  select  the  gadget  labeled
Parallel  at  the  upper  left  of  the  scl.een.     If  it's  attached  to  the
serial  connector,   select  the  gadget  labeled  Serial.

•      Paper  size.      There  are  fourpreset  sizes  you  can  select  from:
US  Letter  (8-1/2  inches  wide,11  inches  tall),  US  Legal  (8-1/2
inches   wide,    14   inches   tall),   Narrow   Tractor   (9-1/2   inches
wide,   11  inches  tall),   and  Wide  Tractor   (14-7/8  inches  wide,
11  inches  tall).

You  can  use  other  sizes  of paper  by  selecting  Custom.    When
you  select  Custom,  you  must  also  specify  the  number  of  lines
that fit  on the  size  of the paper you're  using.    To  do  this,  select
the gadget labeled Length just below the paper sizes,  type in the
number of lines,  then press the  RETURN key  on the  keyboard.

•      Left  and  Right  Margins.     You  indicate  the  width  of  these
margins by  specifying numbers  of characters  from the  left-hand
edge  of  the  paper.     To  specify  the  width  of  the  left  margin,
select the  gadget to  the  right  of the  words  Left  Margin,  type  in
the   width,   in   characters,   of  the   left   margin,   then   press   the
RETURN key.   To  specify the  width  of the  right  margin,  select
the  gadget  to  the  right  of the  words  Right  Margin,  type  in  the
width,  in characters,  for the distance from the left-hand edge of
the  paper  to   where   the   right   margin   begins,   then  press   the
RETURN  key.

•      Paper  Type.     Select  Fan fold  if  you're  using  continuous-feed

paper.     Select  Single  if  you're  printing  on  individual  sheets.

•      Quality.     For  faster  but  lower-quality  printing,   select   Draft.

For  higher-quality  printing,   select  Letter.

Reference         7-7

`-

-



`-

`-

`-

•      Pitch.    You use  this  to  select the  size  of the  characters  that  are

printed.      You   can  select  from   among   10  pitch   ("pica"),    12
pitch   ("elite"),   and   15  pitch   ("fine").

S|)acing.    This  lets  you  select  how  closely  lines  are  printed  on
the  page.     Select  either  6  or  8  lines  per  inch   ("lpi").

There    is    an    additional    gadget   in   this    screen   labeled    Graphic    Select.
Selecting  this  gadget  opens  the  Pr!."f er  GrczpA!'cs  Requesfej~..

Aspect

You  use  this  screen  to  select  different  ways  to  print  images:

7-8         Reference



•      Shade lets  you  select  color printing,  gray-scale  printing  (where
colors    are   represented   by    different    shades    of    gray),    or          \J
back-and-white printing  (where some colors are printed as pure
black,  and  others  as pure  white.   Whether  a  color  is  printed  as
black  or  white  is  determined  by  the  fAresfeoJd  vc!Jue  described
below.)

•      Aspect lets  you  select whether to  print  normally  or  "sideways"
on  the  page.     Select  Horizontal  to  print  "normally,"   so  that
what  appears  on  the  top  of  the  display  appears  along  the  top
edge  of the printer paper.   Select Vertical to print what appears
on the  top  of the  display  along the  side  of the printer paper.

•      Image  lets  you  print  an  image  as  it  appears  on  the  display  (by
selecting  Positive)  or  "reversed"   (by  selecting  Negative).    This
setting  affects  only  black-and-white  and  gray  scale  printing.

•      Threshold,   for  black-and-white   printing,   lets   you   determine
which  colors  are  printed  as  white,  and  which  as  black.     You
change the Threshold setting by dragging the arrow in the  slider
below   the   label   Threshold.      When   the   setting  for   Image   is
Positive  and  the  Threshold  setting  is  2,  only  the  darkest  color
on   the   display   is   printed   as   black,   while   the   rest   is   white.
Increasing the value of the Threshold setting causes more colors
to  be  printed  as  black.  As  you  increase  the  setting,  the  lighter
colors  are  printed  as  black.

When   the    setting   for    Image    is    Negative,    the    higher   the
Threshold  setting,  the  lighter  are  the  colors  that  are  printed  as
black.

Note   that   not   all   these   choices   apply   to   all   printers.       For   example,
letter-quality printers  that  use  a  "daisy  wheel"  printhead  can  only  produce
one  quality  of printing.    To  find  out  what  selections  apply  to  your  printer,
see  the  documentation  provided  with  the  printer.

When you're  done making selections  for your printer,  select  OK to  confirm
your  selections  or  Cancel  to  cancel  them.    Selecting  either  OK  or  Cancel
returns  you  to  the  Preferences  window.

Reference         7-9

`-

-



IRE

EEe

riRE

Getting  Back Preferences

If you'd like to get back the Preferences settings  that came with the  original
Workbench   disk,   select   Reset   All.      If   you'd   like   to   get   back   the   last
Preferences  settings  you  saved,  select  Last  Saved.

Using  and Saving  Preferences

When  you're  done  with  Preferences,  select  one  of the  gadgets  at  the  lower
right of the window.   Select Save if you want your settings to take  effect now
and each time you start up the Workbench .with the  Workbench  disk you're
currently using.    Selecting  Save  saves  your  settings  on  the  Workbench  disk.
Select  Use  if you  want your  settings to  take  effect  now,  but  you  don't want
to save the settings on the Workbench disk for future use.   If you change the
settings,  then  decide  you  don't  want  them  to  take  effect,  select  Cancel.

Because  each Workbench  disk keeps its  own  Preferences  settings,  different

people  can  save  their  own  settings  on  separate  Workbench  disks.    To  get
back  your  settings,   just  set  up  the  Workbench  using  the   disk  on  which
you've  saved  them.

Input/Output Connectors

This  section lists pin assignments for several input/output connectors  on the
Amiga.    The information  in this  section  is  highly technical  and  is  intended
only for those  expert in  connecting external  devices  to  computers.    You  do
not  need  this  information  if  you  use  a  cable  specifically  designed  for  use
with  the  Amiga  and  the  add-on  you  want  to  connect.

For  information  about  connectors  not  described  in  this  section,   see  the
Amiga  Hardware  Martual.

7-10         Reference



If you attach add-ons with cables other than those designed for use with the
Amiga,  note:    some  pins  on  Amiga  connectors  provide  power  outputs         \/
and    non-standard    signals.        Attempting    to    use    cables    not   wired
specifically  for  the  Amiga  may  cause  damage  to  the  Amiga  or  to  the
equipment you  connect.   The  descriptions below include specific warnings
for   each   connector.      For   more   information   about   connecting   add-ons,
consult  your  Amiga  dealer,

In  the  descriptions  that follow,  an  asterisk  (*)  at the  end  of  a  signal  name
indicates  a  signal  that  is  active  low.

Serial  Connector

In the following table,  the  second column from the  left gives the  Amiga pin
assignments.       The   third   and   fourth   columns   from   the   left   give   pin
assignments for other commonly used connections;  the information in these
two  columns  is  given  for  comparison  only.

WARNING:      Pins  14,  21,  and  23  on  the  Amiga  serial  connector  are
used for external power.   Connect these pins ONLY if power from them         \`J
is required by the external  device.   The table  lists the power provided by
each  of  these  pins.

EEn

Reference          7-11



-
7-12          Reference

RS232 HAYES®     Description

TXD
RXD

S.SD                SI
S.CTS
S.TXD
TXC
S.RXD
RXC

S.RTS
DTR              DTR
SOD
RIRI
SS

FRAME  GROUND
TRANSMIT DATA
RECEIVE  DATA
REQUEST TO  SEND
CLEAR TO  SEND
DATA  SET  READY
SYSTEM  GROUND
CARRIER  DETECT

-5  VOLT  POWER  (50  rnA)
AUDIO  OUT  OF  AMIGA
AUDIO  INTO-AMIGA
BUFFERED  PORT  CLOCK
INTERRUPT  LINE  TO
AMIGA

DATA TERMINAL READY
+5  VOLT  POWER  (100  rnA)

+12  VOLT  POWER  (50  rnA)
3.58  MHZ  CLOCK
BUFFERED  SYSTEM  RESET



Parallel Connector

WARNING:     Pin  23  on  the  Amiga  parallel  connector supplies +5  volts
of  power.    Connect  this  pin  ONLY  if  the  power  from  it  is  required  by
the   external   device.      NEVER   connect   this   pin   to   an   output  of  an
external  device  or  to  a  signal  ground,

Pins  14-22  are  for  grounding  signals.     D0  NOT  connect  these  pins
directly  to  a  shield  ground.

RESET*

Description

DATA  READY
DATA  BIT  0 (Least  significant  bit)
DATA  BIT  1
DATA  BIT  2
DATA  BIT  3
DATA  BIT  4
DATA  BIT  5
DATA  BIT  6
DATA  BIT  7
ACKNOWLEDGE
BUSY
PAPER  OUT
SELECT
SIGNAL  GROUND
SIGNAL  GROUND
SIGNAL  GROUND
SIGNAL  GROUND
SIGNAL  GROUND
SIGNAL  GROUND
SIGNAL  GROUND
SIGNAL  GROUND
SIGNAL  GROUND
+5  VOLTS  POWER  (100  rnA)

RESET

Reference         7-13

`-

EE

BEE



RGB Monitor Connector

WARNING:      Pins  21,  22,  and  23  on  the  RGB  monitor  connector  are
used for external power.   Connect these pins ONLY if power from  them
is  required  by  the  external  device.   The  table  lists  the power provided by
each  of  these  pins.

7-14          Reference

Name

XCLK*
XCLKEN+
RED
GREEN
BLUE
DI
DB
DG
DR
CSYNC*
HSYNC*
VSYNC*
GNDRTN
ZD*
C1*

GND
GND
GND
GND
GND
-5V
+12V
+5V

Description

EXTERNAL  CLOCK
EXTERNAL  CLOCK  ENABLE
ANALOG  RED
ANALOG  GREEN
ANALOG  BLUE
DIGITAL  INTENSITY
DIGITAL  BLUE
DIGITAL  GREEN
DIGITAL  RED
COMPOSITE  SYNC
HORIZONTAL  SYNC
VERTICAL  SYNC
RETURN  FOR  XCLKEN*
ZERO  DETECT
CLOCK  OUT
GROUND
GROUND
GROUND
GROUND
GROUND
-5  VOLTS  POWER  (50  rnA)
+12  VOLTS  POWER  (175  rnA)
+5  VOLTS  POWER  (300  rnA)

`-

-/



TV Modulator Connector

WARNING:    Pin 7 on the TV modulator connector supplies +12 volts of
powet..     Connect  this  pin  ONLY  if  power  from  it  is  required  by  the
external  device.

Name

GND
AUDIO  LEFT
COMP  VIDEO
CND

+12V
AUDIO  RIGHT

Mouse/Game  Controller Connectors

Descl.iption

GROUND
LEFT  AUDIO  CHANNEL
COMPOSITE  VIDEO  OUTPUT
GROUND

+12  VOLTS  POWER  (60  rnA)
RIGHT  AUDIO  CHANNEL

There are connectors labeled  " 1"  and  "2"  on the right side  of the Amiga.  If

you use  a mouse to  control the Workbench,  you must attach it to  connector
1   (the  connector  closest  to  the  front  of  the  Amiga).  You  can  attach  game
controllers to either of the  connectors.   To use  a light pen,  you must attach
it  to  connector  1.    The  following  tables  describe  mouse,  game  controller,
and  light  pen  connections.

WARNING:       Pin  7  on  each  of  these  connectors  supplies  +5  volts  of
power.     Connect  this  pin  ONLY  if  power  from  it  is  required  by  the
external  device.

Reference          7-15

EE

RE

..-



Connectors  1  and  2:    Mouse  Connections

Name

MOUSE  V
MOUSE  H
MOUSE  VQ
MOUSE  HQ
MOUSE  BUTTON  2
MOUSE  BUTTON  1
+5V
GND
MOUSE  BUTTON  3

Connectors  1  and  2:    Game  Controller

7-16          Reference

Name

FORWARD*
BACK*
LEFT*
RIGHT*
POTX
FIRE*
+5V
GND
POTY

Description

MOUSE  VERTICAL
MOUSE  HORIZONTAL
VERTICAL QUADRATURE
HORIZONTAL  QUADRATURE
MOUSE  BurrTON  2
MOUSE  BUTTON  1
+5  VOLTS  POWER  (125  rnA)
GROUND
MOUSE  BUTTON  3

Description

CONTROLLER  FORWARD
CONTROLLER  BACK
CONTROLLER  LEFT
CONTROLLER  RIGHT
HORIZONTAL  POTENTIOMETER
CONTROLLER  FIRE
+5  VOLTS  POWER  (125  rnA)
GROUND
VERTICAL  POTENTIOMETER

-

`-



Connector  1:    Light  Pen  Connections

Pin                Name Description

LIGHT  PEN  PRESS       LIGHT  PEN TOUCHED  TO  SCREEN
LIGHT  PEN*                    CAPTURE  BEAM  POSITION
+5V                                         +5  VOLTS  POWER  (125  rnA)
GND                                      GROUND

Radio and Television Interference

Your  Amiga  generates  and  uses  radio  frequency  energy.    If  it  not  installed
and  used properly,  that is,  in  strict  accordance  with the  instructions  in this
manual,  it  may  cause  interference  to  radio  and  television  reception.    The
Amiga  has been  certified to  comply with the  limits for  a  Class  8  computing
device,   pursuant  to  subpart  J  of  Part   15   of  the   Federal   Communication
Commission's  rules,   which  are  designed  to  provide  reasonable  protection
against radio  and  television  interference  in  a  residential  installation.    If you
suspect interference,  you can test the Amiga by turning it off and on.   If the
Amiga  does  cause  interference,  try  the  following:

•      Reorient  the  antenna  or  AC  plug  on  the  radio  or  television.

•      Change  the  relative  positions  of  the  Amiga  and  the  radio  or
television.

•      Move  the  Amiga  farther  away  from  the  radio  or  television.

•      Plug either the  Amiga  or the  radio  or television  into  a  different
outlet  so  that  the  Amiga  and  the  radio   or  television   are   on
different  circuits.

Reference          7-17

-'

-

EI1



-

-

'EE

Use  only  shield-grounded  cables  when  connecting  peripherals   (computer
input-output    devices,    terminals,    printers,    etc.)    to    the    Amiga.        All
peripherals  must be  certified to  comply  with  Class  8  limits.    Operation  with
non-certified  peripherals   is   likely  to   result   in   interference   to   radio   and
television  reception.

Your house AC wall receptacle must be  a three-pronged type  (AC ground).
If   not,    contact   an   electrician   to   install   the   proper   receptacle.       If   a
multi-connector  box  is  used  to  connect  the  computer  and  peripherals  to
AC,  the  ground  must  be  common  to  all  units.

If necessary,  consult  your  Amiga  dealer  or  an  experienced  radio-television
technician   for   additional   suggestions.     You   may   find   the   following  FCC
booklet   helpful:      ``How   to   Identify   and   Resolve   Radio-TV   Interference
Problems."    The  booklet  is  available  from  the  U.S.   Government  Printing
Office,  Washington,  D.C.  20402,  stock  no.  004-000-00345-4.

Amiga Specifications

Central  Processor

Memory

Disks

Mouse

7-18          Reference

Motorola  MC68000

256K  bytes  RAM  expandable  to  512K

3-1/2   inch   double-sided   microdisks   with
880K  bytes  formatted  storage  capacity  per
disk

Mechanical,    .13   mm/count    (200    counts

per  inch)



Interfaces

Supported  Monitors

Power  Requirements

Temperature  Requirements

Humidity  Requirements

Maximum  Weight  the
Main  Unit  Can  Support

RS-232  serial  interface

Centronics®-compatible  parallel  interface

External  disk  interface

Mouse/Game  controller  interface

Additional  game  controller  interface

Keyboard  interface

Two  audio  outputs  for  stereo  sound

Memory  cartridge  interface

Expansion  interface

RGB,      NTSC      (composite     video),      and
standard  televisions

99  to   121  volts  AC
54  to  66  Hz

For  operation:    5  to  45  degrees  Celsius  (41
to   113  degrees  Fahrenheit)

For   storage:      -40   to   60   degrees   Celsius

(-40  to   140  degrees  Fahrenheit)

20%        to        80%        relative        humidity,
non-condensing

40  pounds   (18  kilograms)

Reference          7-19

L,

`-

EE



-

iRE

ERE



Appendices   u

Appendix A:  Workbench Tools

The  Workbench  disk  contains  several  tools:

•      Preferences,  the  tool  you  use  to  change  many  of  the
settings   of  the   Amiga.      Preferences   is   described   in
Chapter  7.

•      Demonstrations  that  show  the  graphics  capabilities  of
the  Amiga.     You  can  find  these  tools  in  the  Demos
drczwer  on  the  Workbench.    To  start  a  demonstration,
select   one   of  the   icons   in  the   Demos   drawer,   then
choose  Open  from  the  Workbench  menu.    To  stop  a
demo,  select  the  Close  Gadget  in  the  upper  left-hand
corner  of the  demonstration's  window.

•      The  c/ock and the Ivocepc2d.   These tools  are  described
below.

Appendices         A-1

`-

•-



The Clock

The Clock tool lets you show the current time.   In addition,  you can use the
Clock  as  an  alarm  clock.

Setting  the Time

To  set  the  time  for  the  Clock,  use  the  Preferences  tool.     (To  learn  about
Preferences,  see  Chapter  7.)

Opening  the  Clock

To  open  the  Clock,  select  the  Clock  icon  in  the  Workbench  disk  drawer,
then  choose  Open  from  the  Workbench  menu.    When  you  do,  an  analog
clock  with  a  second  hand  appears  in  a  window.

Using the Clock Menus

Note  that to  choose  from the  menus  described below,  you  must  first  select
the  window  in  which  the  Clock  appears.

Changing the  Clock from Analog  to  Digital

Choose the type  of  clock you  want  (either  analog or  digital)  from the Type
menu.    The  type  currently  chosen  is  indicated by  a  check mark.

A-2        Appendices

•-

-

EE



Changing  the  Size  and  Position  of the  Clock

To  change  the  size  of  an  analog  clock,  drag  the  Sizing  Gadget  at  the  lower
right-han'd  corner  of the  window.    (You  cannot  change  the  size  of  a  digital
clock's window.)   To move the  Clock to a new location,  drag the window by
its  Drag  Bar.

Changing  from  a  12-  to  a  24-Hour Clock

You  can  choose  either  the   12  Hour  or  24  Hour  setting  from  the  Mode
menu.    The  current  setting  is  indicated  by  a  check  mark.

Displaying  the  Seconds

If  you  don't  want  to  display  the  second  hand  on  an  analog  clock  or  the
digits  for  the  seconds  on  a  digital  clock,  select  the  Seconds  gadget  in  the
lower  left  corner  of the  Clock  window.    Selecting  the  Seconds  gadget  again
restores  the  second  hand  or  the  seconds  digits,

Setting  the Alarm

The  items  in the  Alarm menu  let you use the  Clock as  an  alarm  clock.    To
set the  alarm,  choose  Set.    In the  requester that appears,  the time  is  shown
using  either   a   24-hour   clock   or   a   12-hour   clock  with   "AM"   or   "PM"
indicated.    To  change  the  hour  setting,  point  to  the  digits  for  the  hours,
click the  Selection button,  then select either the up  arrow  (to move the time
ahead)  or the  down  arrow  (to  move the  time  back).    To  change  the  setting
for  the  minutes,   point  to  the   digits  for  the  minutes,   click  the   Selection
button,  then  select  either  the  up  or  down  arrow.     Selecting  AM  or  PM
switches  the   setting.      When  the   time   is   set   correctly,   select   USE.      If,
instead,  you  want  to  restore  the  previous  alarm  setting,  select  CANCEL.

Appendices         A13

EE

I-

`-



\--

`-

`-

To turn  on the  alarm  clock,  choose  Alarm  On  from  the  Alarm  menu.    To
turn  it  off ,  choose  Alarm  Off .

The  "alarm"  is  a  brief  flash  on  the  display   (the  same  flash  that  appears
when  an  error  occurs)   accompanied  by  an  equally  brief  "beep"   sound  if

your  Amiga  is  attached  to  audio  equipment.

Closing  the  Clock

To  close  the  Clock,  select  the  Close  gadget  in  the  upper  right-hand  corner
of  the  window.

The Notepad

With the Notepad tool,  you can keep notes  or create short documents.   You
can  find  the  Notepad  in  the  Utilities  drawer  on  the  Workbench  disk.

Opening  the  Notepad

You  open  the  Notepad  by  selecting  its  icon,  then  choosing  Open  from  the
Workbench  menu.    When  you  do,  a  window  for  the  Notepad  appears.

Entering Text

To  enter  text,  select  the  Notepad  window  if  it  isn't  already  selected,  then
type.   When you type,  the characters you type  appear to the  left  of the Text
Cursor    (the   vertical   bar   that   appears   in   the   window).       As   you   add
characters,  any  characters to the right  of the  Text  Cursor  move  to  the  right
or,  if they're  at the right edge of the window,  down a  line.    (To  see how this
works,  try  adding  characters.)

A-4         Appendices



When  you're typing and  you  reach the bottom  of the  window,  the  contents
of the  window  are  scrolled  upward.

Moving the Text  Cursor

To  move the Text  Cursor,  point to  a  place  within  your note,  then  click the
Selection  button.   (Note  that  you  cannot  move the  Pointer to  a point  in  the
window  beyond  where  you've  entered  characters.)    You  can  also  move  the
Text  Cursor by pressing the  cursor keys.    Note  that  when  you  press  the  up
or  down  cursor  key  and  you  reach  the  top  or  bottom  of  the  window,  the
contents  of  the  window  are  scrolled.

Changing  the  Size  of the  Notepad Window

You  can  change  the  size  of  the  Notepad  window  by  dragging  the   Sizing
Gadget   at   the   lower   right.      When   you   do,   your   note   is   automatically
reformatted.

Moving  from  Page  to  Page

There are two additional gadgets in the Notepad window.   The gadget at the
lower  left  of  the  window  is  the  Next  Page   Gadget.     Select  this  gadget  to
display  the  next  page  of  your  note.  The  gadget  at  the  upper  right  is  the
Previous  Page  Gadget.     Select  this  gadget  to  display  the  previous  page  of

your  note.

The Notepad Menus

The  Notepad has four menus:   Project,  Font,  Style,  and Format.   These  are
described  below.

Appendices         A-5

`-

`-

`-



ERE

`-

`-

The  Project  Menu

New

Choose  New  to  start  a  new  note.

Open

Choose   Open  to   open   a  note   you   previously   saved.      When   you   do,   a
requester  appears.    Select  the  gadget  to  the  left  of  "Name:",  then  change
the  name,  if one  appears,  to  make  it the  name  you  want.

To  change  what  appears  in  the  gadget,  press  the  DEL  key  to  delete  the
characters  at  and to  the  right  of the  Text  Cursor.  Press  the  BACKSPACE
key to  delete  characters to  the  left  of the  cursor.   You  can use  the  left  and
right  cursor  keys to  move  the  cursor.    You  can  erase  what  you've  typed  in
the gadget by pressing the right Amiga key  and the  X key  at the  same time.
You  can get back what was in the  gadget before  you  started by pressing the
right  Amiga  key  and  the  Q  key  at  the  same  time.

When  you're  done,  press  the  RETURN  key,  then  select  the  OK  Gadget.
The  note  whose  name  you  type  replaces  the  current  note.

Save

Choose  Save  to  save  the  current  note.    If  you  haven't  already  saved  your
note,  a requester  appears  and  lets  you  give  it  a  name.  Select the  gadget  to
the  left  of  "Name:",  type  in  a  name,  press  the  RETURN key,  then  select
the  OK  Gadget.

Save As

Choose Save As to save the current note under a new name.  When you do,
a requester appears.   Select the gadget to the left of  "Name:",  then  change
the  name,  if one  appears,  to  make  it the  name  you  want.

To  change  what  appears  in  the  gadget,  press  the  DEL  key  to  delete  the
characters  at and to the  right of the  Text  Cursor.    Press the  BACKSPACE
key to  delete characters to the left of the cursor.   You can use the left  and
right cursor keys to  move the  cursor.    You  can  erase  what you've typed in
the gadget by pressing the right Amiga key and the X key at the same time.

A-6        Appendices



You  can get back what was  in the  gadget before  you  started by pressing the
right  Amiga  key  and  the  Q  key  at  the  same  time.

When  you're  done,  press  the  RETURN  key,  then  select the  OK  gadget.

Note  that  when  choosing either  Save  or  Save  As,  your  note  is  saved  in  the
drawer  whose  window  was  selected  when  you  opened  the  Notepad.

Print

To  print  your  note,  you  choose  one  of  the  items  from  the  Print  submenu.
(To  choose from the  submenu,  point to  Print,  then,  with the  Menu button
still   held   down,   move   the   Pointer   to   the   right,   point   to   one   of   the
options-explained  below-then  release  the  Menu  button.)

Choosing  the  Auto-size  option  prints  an  image  that  is  approximately  the
same  size  as  the  image  on  the  display.    By  choosing the  Small  option,  you

print  an  image  whose  width  is  one-quarter  the  width  of the  printer  paper.
(You  use  the   Preferences  tool  to  specify  the  width   of  the  paper  you're
printing  on.     However,   note  that  specifying  different  dimensions  for  the
paper  affects  only  notes  printed  when  Draft  option  is  chosen.  The  Draft
option  is  described below.)    By  choosing the  Medium  option,  you  print  an
image  whose  width  is  one-half the  width  of the  printer  paper.  By  choosing
the  Large  option,  you  print  an  image  whose  width  is  the  full  width  of  the
printer  paper.

If the  Graphic  option  in  the  Print  As  submenu  is  chosen  (see  below),  you
print,  for  each page,  a picture  of the  Notepad  window  with the page  within
it.   If the Draft option in the Print As submenu is  chosen,  you print only the
text  of  the  note.

Print As

From'the  submenu,  choose  Graphic  if  you  want  to  print  a  pixel-by-pixel
representation  of  the  window  in  which  your  note  appears.    (If  you  have  a
color printer,  you can print the note in  color.)   Choose  Draft if you want to

print  only  the  text  of the  note.

Appendices         AT7

`-

RE

I-



`-

`-

EE

Quit

Choose  Quit  when  you're  done  and  want  to  close  the  Notepad.

The  Font Menu

From  the  Font  menu,  you  can  choose  the  typeface  and  type  size  for  your
note.   The names of the  seven  different typefaces  (Topaz,  Ruby,  Diamond,
Opal,   Emerald,   Garnet,   and   Sapphire)   are   shown   when   you   open  the
menu,   while   the   available   type   sizes   for   each   typeface   are   shown   in
submenus.   To  choose from the  Font menu,  point to  a name  of a typeface,
then,  with the  Menu  button  still  held  down,  move  the  Pointer  to  the  right,
point  to  a  type  size,  then  release  the  Menu  button.

To  see the  available typefaces  and type  sizes,  type  in  a  note,  then  try  each
of the  choices.  The  currently  chosen  typeface  is  shown  with  a  check  mark
to the left  of the  menu  item.    In  addition,  the  currently  chosen type  size  is
shown  with  a  check  mark  if  there  is  more  than  one  size  for  the  currently
chosen  typeface.

Note  that  the  currently  chosen  typeface  and  type  size  apply  to  the  entire
note.

When  you  choose  a  new  typeface  and  type  size,  a  previous  type  size  you
chose for a different typeface may still have  a check mark to the left of it.  If
this  is  the  case  and  you  attempt  to   choose  the  previous  typeface  again,
nothing may happen.   If this  should  occur,  choose  another type  size  for the

previous  face,  then  choose  the  size  you  want.

The  Style  Menu

From this menu,  you can choose  either standard  (Plain)  characters for your
note,  or  change  the  type  style  by  choosing  Italic,  Bold,  Underlined,  or  any
combination  of the three.    At any point in your note  you  can  choose  a  new
type  style;  this  sets  a  marker  in  your  note  and  all  the  characters  from  this
marker to the next  (or to the  end  of the  file,  if there  are  no  other markers)

A-8         Appendices



are changed to the new style.   Try the different choices and watch how your
note  changes.

Note that when you  choose  Italic,  Bold,  or  Underline,  your  choice  stays  in
effect  until  you  choose  Plain.

There are command-key shortcuts for each of the items  in this  menu:  press
the  right  Amiga  key  and  the  P  key  at  the  same  time  to  choose  Plain;  the
right Amiga key and the  I key to  choose  Italic;  the  right Amiga key and the
8  key  to   choose   Bold;   the  right  Amiga  key  and  the   U  key  to   choose
Underline.   As a reminder,  the shortcut for each item is shown in the menu
to  the  right  of  the  item.

The  Format  Menu

`-

Paper  Color

Choose  Paper  Color  to  change  the  background  color  for  your  note.    You
then   choose   a   color   from   the   four   shown   in   the   submenu    (see   the
description   of  the   Font   menu   above   to   learn   how   to   choose   from   a        \J
submenu).    The  currently  chosen  color  is  indicated  by  a  check  mark.

Pen  Color

Choose  Pen  Color to  change  the  color  of the  characters  in  your note.    You
then   choose   a   color   from   the   four   shown   in   the   submenu    (see   the
description   of   the   Font   menu   above   to   learn   how   to   choose   from   a
submenu).    The  currently  chosen  color  is  indicated  by  a  check  mark.

Be  sure  that  the  pen  color  is  different  from  the  paper  color;  if  you  don't,

you  won't  be  able  to  read  your  note.

`-
Appendices         A-9



\,     Appendix B:   AmigaDOS Messages

When  error  messages  appear,   they  often  include  error  nc{mbers.     These
numbers  are  generated  by  Am!'gc2DOS,  the  Amiga  disk  operating  system.
This  appendix  lists  error  numbers  that  are  likely  to  appear  when  you're
using    the    Workbench,    together    with    the    AmigaDOS    message    that
corresponds  to  the  number  and  suggestions  for  what  to  do.

For more information about the meaning of a specific error number and for
explanations  of  error  numbers  not  listed  here,   see  the  Am!.gczDOS  User's
Manual,

103

121

-,

-/

Out.Of  Memory:     The  Amiga  needs  more  memory  to  perform  an
operation.     Close  one  or more windows,  then try the  operation  again.
In  rare  cases,  you  may  have  to  reset  the  Amiga  to  reclaim  sufficient
memory  to  continue.

This  error  can  also  occur  if  you  attempt  to  open  a  tool  that  requires
more memory than is installed in your Amiga.   For information  about
how  much  memory  a  tool  needs,  see  the  manual  for  the  tool.

Not an  Object  Module:   This  error may  occur if you try to  open  a tool
that has been damaged.   Try making a new copy of the tool from your
original  disk.

202         Object in use:   Another tool is usingthe project or tool you want.   You
may  have  to  wait  for  the  other  tool  finish.

203         Object Exists:   You cannot give an object the same name as  an existing
object.     Either  give  the  object  a  different  name  or  delete  the  other
object  so  you  can  reuse  its  name.

205         Object Not Found:   A tool or project that the Amiga needs to  locate  is
not present on the disk.   This can happen if you've  (1)  moved a tool to
a different drawer, then try to open a project created with that tool,  or
(2)  renamed  either  the  System  or  Utilities  drawer  on the  Workbench
disk,  then  tried  to  open  a  project  created  with  a  tool  that's  in  the
drawer,  or  (3)  the  disk  containing  a  tool  you  need  is  not  in  a  disk
driye ,

A-10        Appendices



210         Invalid  Stream  Name:     When  renaming  a  tool,   project,   drawer,   or
disk,  you  have  used  an  invalid  character.

213         Disk  Not  Validated:     If  you've   either  removed  a   disk  or  reset  the
Workbench  while  the  disk  drive  light  was  on,  the  information  on  that
disk  may  be  unusable.    This  error  may  also  occur  if  the  disk  surface
has been  damaged.    There  is  currently  no  way to  recover  information
from  a  disk that  cannot  be  validated.

214         Disk Write  Protected:    You have  asked  the  Amiga  to  add  information
to  your  disk  when  the  protect  tab  is  in  the  protected  position.     (See
pages  3-2  and  3-3 for information  about protect tabs.)    Either  change
the position  of the protect tab  or use  a  disk whose protect tab  is in the
unprotected  position.

216         Directory  Not  Empty:     You  have  tried  to  delete   a  drawer  that  still
contains  tools,  projects,  or  other  drawers.    You  must  empty  a  drawer
before  deleting  it.

218         Device  Not  Mounted:   This  error occurs when a tool needs  a disk that
is  not  currently  in  a  disk  drive.

221         Disk Full:   There is not enough free storage on the disk to do what you
have  requested.    Try  emptying the  Trashcan    (see page  4-17).    If this
doesn't  work,   you  must  either  delete  objects  on  the   disk  or  use  a
different  disk.

222         File  Delete  Protected:    A  tool,  project,  or  drawer  cannot  be  deleted
because  it  is  protected.     Select  the  icon  for  the  object,   choose  Info
from  the  Workbench  menu,  then  change  its  status  to  DELETABLE.

225         Not  a  DOS  Disk:    Either  the  disk  has  not  been  formatted  or  it  is  a
Kickstart   disk.      Use   a   different   disk,   or,   if  you   wish  to   erase   all
information   currently   on   the   disk,   choose   Initialize   from   the   Disk
menu.

226          NO  Disk  in  Drive.

Appendices         A-11

`-

RE'

-



u     APpendix c:  Changing the pointer
You  can  use  the  Preferences  tool  to  modify  the  Pointer.     The  following
instructions  tell  you  how.

Opening Preferences

You   can   find   the   Preferences   tool   on   the   Workbench   disk.   To   open
Preferences,  insert the  Workbench disk,  select the  icon  for the  Workbench
disk when it appears,  then choose Open from the Workbench menu.   When
the    Preferences    icon    appears,    select   it    and    choose    Open    from   the
Workbench  menu.

To  learn  more  about  Preferences,  see  Chapter  7.

The Pointer Editing Window

When  the  Preferences  screen  appears,  select  the  Edit  Pointer  Gadget  that
appears near the lower right-hand corner.   In a moment,  a window appears.
In  this  window-the  Po!.„fer  Edj./!.#g   W!.„dow-a  magnified   image   of  the
Pointer appears at the upper left.   It is this magnified image that you modify
to  change the Pointer.   To the  right of the  magnified view  are  copies  of the
Pointer that appear against each of the four Workbench colors;  these copies
let   you   judge   how   the    Pointer   will   look   against   the    colors    on   the
Workbench.

Changing  the  Colors

The  colors  you  use  to  draw  the  Pointer  appear  near  the  bottom  of  the
window.    Note  that  these  colors  can  be  different  from  those  used  for  the
Workbench.    You  can  modify  the  three  colors  to  the  left  in  the  same  way
you  modify  the  Workbench  colors:  by  changing the  R,  G,  and  8  values  for
each.   The  rightmost  "color"  is  not  a  color  at  all:    any parts  of the  Pointer

you  draw  with  it  are  transparent.    When  you  move  the  Pointer,  colors  on

A-12         Appendices

`.-

`-



the  Workbench behind  any transparent parts  of the  Pointer  show  through.
If,  after you modify the pointer colors, you want get back the last colors that         1/
were  saved,  select  the  Resetcolor  Gadget.

Changing  the  Pointer

To  modify  the  Pointer,  select  one  of the  colors  or  transparent,  point  to  a
place in the magnified view where you want a pixel of that color,  then click
the  Selection button.   If you want to start from scratch,  select  Clear to make
all  the  pixels  transparent.    (If,  after  you  make  changes,  you'd  rather  have
the  old  Pointer  back,  select  Restore.)

Changing  the  Point

Every  Pointer has  a single pixel  called the poj.nf .   To point to  something on
the  display,  you  position  the  Pointer  so  that  this  pixel  is  over  it.

In  the  magnified  view  of  the  Pointer,  the  point  is  indicated  by  a  smaller
square  within  one  of the  pixels.    To  change  the  Pointer's  point,  select  Set
Point,  point to  the  pixel  in the  magnified  view  you  want  as  the  point,  then
click  the  Selection  button.

When  you're  done  and  are  happy  with  the  Pointer  you've  created,  select
OK.     To  get  back  to  the  main  Preferences  screen  without  changing  the
previous  Pointer,  select  Cancel.

Appendices         A-13

EE

`-



EE`

`-,

RE



Glossary  u

-,

RE

add-on

alert

ALT  key

Amiga  keyboard

Ami8a  key

A  printer,  game  controller,  modem,  or  other  external
component  you  use  with  an  Amiga.

a

A  message  displayed  when  there  is  a  serious  problem
with  an  Amiga.

One of two  keys next to the  Amiga keys  at the bottom
of the  keyboard.

The  keyboard  similar  to  a  typewriter's  attached  to  an
Ami8a.

One of the two keys on an Amiga keyboard to the  left
and right of the Space Bar.   You use the left Amiga key
for  selection  shortcuts  and  the  right  Amiga  key  for
menu  shortcuts.    You  also  use  the  Amiga  keys  when
operating  the  Amiga  without  a  mouse.

Glossary          G-1



RE

-

ERE

Amiga  Memory
Expansion  Cartridge

Amiga  Monitor

AmigaDOS

audio  connector

audio  signal

available  menu  item

Back  Gadget

baud  rate

cable

choose

chosen  option

click

Clipboard

clipping

Clock

G-2         Glossary

A cartridge  you plug into the  front of the  Amiga to  add
256K  of  memory.

An  RGB  monitor  made  for  use  with  the  Amiga.

The  Amiga  disk  operating  system.

The     connector     you     use     when     attaching     audio
equipment  with  an  Amiga,

The  output  from  one  of  the  two  audio  connectors  on
the  Amiga.

An  item  in  a  menu  that  you  can  choose.

A   gadget   you   select   to   move   a   window   or   screen
behind  other  windows  or  screens  that  overlap  it.

The  rate   at  which  information  is  transferred  through
the  serial  connector.

A set of insulated wires used either to connect the parts
of  the  Amiga  or  to  connect  add-ons  to  the  Amiga.

To  pick  a  menu   item.     You  normally   choose   menu
items  with  the  aid  of  the  Menu  button.

An  option  that  is  currently  in  effect.

1.    To  press  and  release  a  mouse  button.     2.     The
action  you  perform  when  you  click.

A place  where  parts  of  a  project  that  you  cut  or  col)y
are  kept.

A part of a project that has been cut or copied and put
on  the  Clipboard.

A    tool    that    lets    you    display    the    time    on    the
Workbench.



close

Close  Gadget

Color  Palette

column

command

1.     To  remove  a  window,  requester,  or  screen  from
the  display.      2.      To  put  away  a  tool  or  project.

A gadget that you select to close a window or screen.

The  set  of  colors  available  in  a  screen.

A   set   of  adjoining   pixels   or   characters   that   form   a
vertical  line  on  the  video  display.

A  menu  item  that,  when  you  choose  it,  instructs  the
Amiga  to  perform  a  task.    Compc}re  option.

composite  video  monitor    See  NTSC  monitor

connector

Copy

cursor  key

custom  screen

cut

Demos  drawer

destination  disk

discard

disk

disk  drawer

Any  of  the  places  on  the  outside  of  the  Amiga  which
you  use  to  attach  external  equipment.

To  replicate  a  tool,  project,  drawer,  or  disk.

One  of  four  keys  with  an  arrow  on  top  at  the  right  of
the  keyboard.   You press these keys either to move the
Text Cursor or,  by pressing an Amiga key at the same
time,  to  move  the  Pointer.

A   screen   created   by   a   tool   for   its   own   use   and,
optionally,  for  use  by  other  tools.

To   remove   part   of   a   project   and   place   it   on   the
Clipboard.    Compcire  erase.

A    drawer    on    the    Workbench    disk    in     which
demonstration  tools  are  kept.

When  copying  disks,  the  disk  that  receives  the  copy.
Compc}re  source  disk.

To dispose of a project,  tool,  or drawer by putting it in
the  Trashcan.

A  medium  for  storing  and  retrieving  information.

A  drawer  that  contains  the  contents  of  a  disk.

Glossary         G-3

-,

u

'\J



disk  drive

disk  drive  light

disk  gauge

display

Display  Centering
Gadget

double  click  [n.]

double-click  [v.]

Double-Click  Slider

drag

Drag  Bar

drawer

G-4         Glossary

IRE

`-

-/

A   device   for   reading   information   from   and   saving
information  on  a  disk.

A light on the front of a disk drive that shows when the
disk  cannot  safely  be  removed.

A  indicator  at the  left  of  the  window  for  a  open  disk
that  shows  how  much  free  storage  is  available.

That  which  appears  on  a  video  monitor  or  television.

A  gadget  provided  by  Preferences  for  centering  the
image  on  the  display.

The  action  you  perform  when  you  quickly  press  and
release  a  mouse  button  twice.

To  quickly  press  and  release  a  mouse  button  twice.

A  gadget  provided  by  Preferences  for  changing  the
maximum  length  of  time  between  the  two  clicks  of  a
double  click.

To   move   an   icon,   gadget,   window,   or   screen   by
putting   the   Pointer   over   what   you   want   to   move,
holding  down  the  Selection  button,  and  moving  the
mouse.

That portion  of  a  Title  Bar that  contains  no  gadgets.
You drag the Drag Bar to move  a window or screen.

A place  where  tools,  projects,  and  other  drawers  are
kept.

To  change  the  contents  of a  project.

To  remove  from the  Trashcan  any  projects,  tools,  or
drawers   you've    discarded.    When   you   empty   the
Trashcan,   you   can   no   longer   get   back   any   of   the
projects,  tools,  or  drawers  that  were  in  it.



erase

error  numbers

exit  gadget

Extended  Selection

Extras  disk

feature

Front  Gadget

gadget

ghost   [adj.]

ghost  gadget

ghost  icon

ghost  menu  item

Graphicraft

highlight

hold  down

To   remove   part   of   a   project   without   putting   what
you've  removed  on  the  Clipboard.  Compczre  cut.

Numbers  that  identify  AmigaDOS  errors.

A  gadget  in  a  requester  that  you  select  to  close  the
requester.

A   technique   for   selecting   more   than   one   icon   or
gadget  at  a  time.    To  use  it,  you  select  with  the  Shift
key  held  down.

One  of  three  microdisks  packaged  with  the  Amiga.

A  noteworthy  property  of  a  tool.

A gadget that  you  select to  move  a  window  or  I.creen
to the front of other windows or screens that  overlap  it.

Any    of   the    facilities    provided    within    a    window,
requester,   or   screen,   such   as   Scroll   Bars,   Sizing
Gadgets,  and  Close  Gadgets,  that  you  use  to  change
what's  being  displayed  or  to  communicate  with  a  tool.

Displayed  less  distinctly  to  indicate  unavailability.

An  gadget  that  is  displayed  less  distinctly  to  indicate
that  it  is  not  currently  available.

An icon that is  displayed less  distinctly to  indicate  that
it  is  not  currently  available.

A menu item that is displayed less distinctly to indicate
that  it  is  not  currently  available.

The  Amiga  graphic  arts  tool.

To  display  something  in   a   way  that   distinguishes   it.
Normally,  something is highlighted to indicate that  it  is
selected.

To  press  a  mouse  button  or  a  key  on  the  keyboard
without  releasing  it.

Glossary         G-5

`-

EE

`-



|Con

initialize

item =  menu  item

key

Key  Repeat  Slider

keyboard

keyboard  cable

keyboard  connector

Kickstart  disk

Look  Again

main  unit

memory

memory  meter

menu

Menu  Bar

G-6         Glossary

-

-a

EE

A visual  representation  of a  tool,  project,  drawer,  or
disk.

To prepare  a  disk so that it can be used by  an  Amiga.

Any  of the  switches  on  a  keyboard.

A  gadget  provided  by  Preferences  for  changing  the
speed at which keys  on the  keyboard repeat when you
hold  them  down.

A   set   of   keys   used   for   typing   or   for   giving   other
information  to  an  Amiga.

The  cable used  to  connect  the  keyboard  to  the  main
unit.

The  connector  on  the  main  unit to  which  you  attach
the  keyboard  cable.

A microdisk that contains information an Amiga needs
to  begin  operating.

A gadget in  Open  Reqesters that you select to update
the  Project  List.

The largest  component packaged  with  the  Amiga.   The
main   unit   contains   the   central   processor   and   other
circuitry,  memory,  and  an  internal  disk  drive.

Electronic  circuits  used  to  store  information.

The   indicator   in   the   Title   Bar   for   the   Workbench
screen  that  shows  the  amount  of  free  RAM  in  bytes.

A  list  of  items  you  can  choose  from.

A strip at the top of a screen that contains menu titles.
The  menu  bar  for  the  selected  window  appears  when
you  hold  down  the  Menu  button.



Menu  button

menu  item

menu  shortcut

menu  title

microdisk

mouse

mouse  ball

mouse  button

mouse  speed

Multiple  Choice

Notepad

NTSC  monitor

OK  Gadget

The  right-hand button  on  the  mouse.

One  of  the  choices  in  a  menu.

A  way  of  choosing  a  menu  item  by  pressing  a  key  on
the keyboard while holding down the right Amiga key.

The  name  that  for  a  menu  that  appears  in  the  Menu
Bar,

A  3  1/2-inch  flexible  disk.

A   device   you   move   on   a   flat   surface   to   move   the
Pointer,

The  ball  on  the  bottom  of the  mouse  that  rolls  as  you
move  the  mouse.

One  of  the  two  buttons  on  a  mouse.

A   option   provided   by   Preferences   for   varying   how
many  inches  you  must  move  the  mouse  to  move  the
Pointer  roughly  a  third  of the  way  across  the  display.

A  technique  for  choosing  more  than  one  option  at  a
time.     To  use  it,  you  hold  down  the  Menu  button,
then  click  the  Selection  button  with  the  Pointer  over
the  options  you  want.

A  tool  provided  with  the  Workbench  for  writing  short
messages.

A  type   of  color  monitor  that   can  be  used   with  the
Ami8a.

A  gadget  in  a  requester  that  you  select  to  carry  out
what  you've  asked  for  in  the  requester.

A  tool,  project,  drawer,  or  disk.

1.      To  display  a  window,  requester,  or  screen.
2.      To  make  a  tool  or  project  available.

Glossary         G-7

`-

`-,,

EE



Open  Requester

Option

palette = color palette

parallel  port

paste

peripheral =  add-on

pixel

pixel  color

point

ERE'

`-

RE

Pointer

Pointer Editing Window

pop-up requester

Port

Preferences

Press

G-8         Glossary

A requester from which  you  select a  pl.oject you want
to  Open.

A  feature  of  a  tool  that,  once  you  choose  it,  persists
until  you  choose  another,  mutually  exclusive  feature.

A connector on the back of the  Amiga that you use to
attach  printers  and  other  add-ons.

To copy the contents of the  Clipboard into  a project.

One  of  the  small  elements  that  together  make  up  the
video  display.

The  color  of  a  pixel  on the  display.

To position the tip of the Pointer over an object on the
display.

The  thing  that  moves  on  the  display  when  you  move
the mouse.  You use the Pointer to  (1)  select icons and
gadgets  (2)  choose  menu  items.

The  window  displayed  by  Preferences  in  which  you
change  the  Pointer.

A  requester  that  you   open  by   double-clicking  the
Menu  button.

A connector for  attaching add-ons to the  Amiga.

A tool that  allows  you to  change  various  settings  of an
Amiga,  including  the  time,  the  Workbench  font,  the
speed that keys on the keyboard repeat when you hold
them    down,    and    the    interval    before    keys    begin
repeating.

To push  down  a  mouse  button  or  key on  a  keyboard.



Printer Requester

project

Project  disk

Project  List

protect

protect  tab

protected  disk

A  requester provided  by  Prefel.ences  that  you  use  to
change  printer  settings.

A place where  information  created  or used by  a  tool  is
kept.   An example  of a project is  a  note  you write  with
the  Notepad.

A  disk  used  to  store  projects.

The   list   of   projects   you   can   open   from   an   Open
Requester.

To prevent the  contents  of a  project,  tool,  drawer,  or
disk  from  being  changed.

A plastic tab  on  a  mic\rodisk that,  when you  slide  it  so
that  there   is   a   hole   through  the   disk,   prevents   the
information  on that  disk from  being  changed.

A  disk  whose  contents  cannot  be  modified.

RAM =  random-access  memory

random-access  memory      Memory  whose   contents   can  be   changed   while   the
computer  is  operating.

redraw

release

rename

Repeat  Delay  Slider

requester

To  redisplay  what  appears  in  a  screen.

To  stop  pressing  or  holding  down  a  mouse  button.

To   change   the   name   of   a   tool,   project,   disk,   or
drawer.

A  gadget  provided  by  Preferences  for  changing  how
long it takes for a key on the keyboard to repeat when
you  hold  it  down.

A rectangular  region in  a  screen  which  you use  to  give
information to  a  tool.    When  a  requester  appears,  you
must   select   a   gadget   in   the   requester   to   close   the
requester   before   you   can   do   anything   else   in   the
window  in  which  the  requester  appears.

Glossary         G-9

`-

`,,'

`-



reset

resolution

reverse  video

RGB  connector

RGB  monitor

row

`\-

`-

`-

Save

screen

scroll

Scroll  Arrows

Scroll  Bar

Scroll  Box

G-10          Gl'ossary

To   set  up  the  Workbench   again   after   it   has   begun
working.

On  a  video  display,  the  number  of  pixels  that  can  be
displayed  in  the  horizontal  and  vertical  directions.

Displayed  using  colors  opposite  those  normally  used,
For  example,  if  letters  are  normally  black  on  a  white
background,  white  letters  on  a  black  background  are
said  to  be  shown  in  reverse  video.

The  connector on  the  back  of the  main  unit that  you
use  to  attach  an  RGB  monitor to  the  Amiga.

A  video  monitor,  such  as  the  Amiga  Monitor,  that
interprets   signals   for   red,   green,   and   blue   to   create
colors.

A set of adjoining pixels that form  a  horizontal  line  on
the  video  display.

To  copy  the  contents  of  a  project  onto  a  disk.

A  full-width  area  of  the  video  display  with  the  same
color  palette,  resolution,  and  other  attributes.

To  move  the  contents  of  a  project  within  a  window.

Arrows  at both  ends  of  a  Scroll  Bar.    To  move  slowly
forward  through  a  project,  put  the  Pointer  over  the
bottom   Scroll   Arrow   and   hold   down   the   Selection
button.    To  move  slowly  backward  through  a  project,
put  the  Pointer  over  the  top  Scroll  Arrow  and  hold
down  the  Selection  button.

A gadget you use to display different parts of a project.

The  rectangular  area  within  a  Scroll  Bar that  you  drag
to  move  rapidly  from  one  part  of  a  project  or  list  to
another.



submenu

submenu  title

select

Selection  button

selected  option

selected  window

selection  shortcut

serial  port

set  up

shortcut

SIze

Sizing  Gadget

slider

source  disk

Space  Bar

status

An   additional   menu   that   appears  to   the   side   of   a
menu.

An  item  in  a  menu  that,  when  you  place  the  Pointer
over  it,  causes  a  submenu  to  appear.

To  pick  an  icon,  gadget,  or  a  part  of  a  project  using
the  Selection  button.

The  left-hand  button  on  the  mouse.

An  option  that  is  currently  in  effect.

The  window  that  you  do  work  in.     Only  one  window
can  be  selected  at  a  time.

A  quick  way  to  select  something by  pressing  a  key  on
the keyboard while holding down the left Amiga key.

A  connector on  the back of the  Amiga  which  you  use
to  attach  modems  and  other  add-ons.

To  start  the  Workbench.

A  quick  way,   from  the  keyboard,   to   (1)   choose  a
menu  item  (2)  select  an  icon  or  gadget.    See  menu
shortcut  and  selection  shortcut.

To  change  the  dimensions  of  a  window  or  screen.

A  gadget you  drag  to  change  the  size  of  a  window.

A   gadget  you   use   to   pick   a   value   within   a   range,
normally  by  dragging  an  arrow  along  a  line.

When  copying  disks,   the  disk  that  is  being  copied.
Compare  destination  disk.

The  long  key  at  the  bottom  of  the  keyboard  that  you
press  to  enter  a  blank  space.

A  characteristic  of  a  tool,  project,  drawer,  or  disk,
such  as  whether  it  is  deletable  or  not  deletable.

Glossary          G-11

`-

•._

RE



`-- string

String  Gadget

Text Cursor

timesaver

Title  Bar

Title  Gadget

tool

U      Trashcan

rv modulator

TV modulator  cable

rv switch box

type

type font

type  size

type style

G-12         Glossary

ERE

A  set  of  one  or  more  characters.

A  gadget  you  use  to  enter  or  modify  strings.

In   projects   containing  text,   a   marker  that   indicates
your  position  in  the  project.

Any technique provided by  a tool to  save  you time.   A
shortcut    is    one    kind    of    timesaver;     another    is
double-clicking   the   Menu   button   to   get   a   pop-up
requester.

A strip  at the  top  of  a  screen  or  window that  contains
the  name  of  the  screen  or  window.

A gadget in  Open  Requesters that  you  use  to  type  in
the  title  of  the  project  you  want  to  open.

A  facility  for  working with  information.    For  example,
the  Graphicraft tool  lets  you  create  and  change  visual
information  that  takes  the  form  of  a  painting.

The place where you put  projects,  tools,  and  drawers
to  discard  them.

A device used to  connect  a television  set to  an  Amiga.

A  cable  you  use  to  connect  the  TV  modulator  to  the
rv switch box.

A device that allows you to connect both an Amiga and
an  antenna  to  a  television  and  switch  between  them.

The kind of object  (tool,  project,  drawer,  or disk)  an
object  is.

A  set  of  letters,   numbers,   and  symbols  that  are  the
same  type  size  and  of the  same  typeface.

The  size  of text.

A variation  of  a  typeface,  such  as  italic  or bold.



typeface A  set  of  letters,  numbers,  and  symbols  that  share  the
same  design.

unavailable  menu  item       Any    item    in    a    menu   that    you    cannot    choose.
Unavailable  menu  items  are  shown  as  ghost  items.

video  cable

video  equipment

video  monitor

Wait Pointer

window

Workbench

Workbench  disk

Workbench  screen

working  disk

``Y"  adapter

The  cable  you use  to  connect  an  RGB  monitor to  an
Amiga.

A  video  monitor  or  television.

A   device   for   displaying   visual   information   from   an
Amiga.

A special  shape  for the  Pointer that  indicates  that  you
must  wait  before  continuing.

A rectangular  area  in  a  screen.    Tools use  windows  to
accept  and  present  information.

A  tool  you  use  to  get  and  manipulate  the  facilities  of
the  Amiga.    You  use  the  Workbench  to  open,  close,
move,  create,  and  delete  projects,  tools and drawers,
to  copy  disks,  as  well  as  to  perform  other  operations.

A  disk that  contains  the  Workbench.

The  screen  used  by  the  Workbench  and  other  tools.

A copy of an original disk that came with the Amiga or
with  a  tool.

An  adapter  that  lets  you  combine  both  of  the  audio
signals  from  an  Amiga  into  a  single  audio  signal.    You
use this  adapter to  connect  the  Amiga  Monitor  to  an
Amiga.

Glossary         G-13

\.-

`-

-,.



V

``,I

EE



Index   -/

AC power  cord   2-1
adding  to  the  Amiga.   5-1
add-ons    5-2

attaching  a printer   7-6
cables  for   5-2

precautions for   5-2
alerts   4-30
ALT key

using menus  with   3-14
Amiga

adding  to    5-1
assembling   2-1
caring  for   6-1
specifications  for   7-18

Amiga  Basic    1-3
Amiga  External  3.5  Disk  Drive    5-3

connector for   2-2
Amiga  Hardware  Manual   1-3

information  a.bout  connectors  in   7-10
Amiga  key,  left

selecting  with    3-10
Amiga  keys

moving  Pointer  with   3-8
Amiga  Memory  Expansion  Cartridge   5-2
Amiga  ROM  Kernel  Manual   \-3
Amiga.  Service  Centers    6-2
AmigaDOS   A-10
AmigaDOS  Developer's  Manual    1-3
AmigaDOS  errors   A-10
Amiga.DOS  messages   A-10
AmigaDOS  Technical  Reference  Manual   \~3
AmigaDOS  User's  Manual    1-3,  A-10

Aspect  (printer  setting)    7-9
assembling the Amiga,   2-1
attaching  a printer   7-6
attributes,  video   4-3
audio  connections

to  stereos   2-10
to  monitors   2-11

audio  connectors   2-10
illustration of   2-2

audio  equipment
attaching an Amiga. to   2-10

Back  Gadget
for  windows   4-21
for screens   4-28

baud rate,  setting   7-5

caLbles

a,ttaching to  connectors   2-2

proper cables  for  add-ons   5-2
shielded   5-2,  7-18
wa.ming about   2-3

care  of monitors   6-2
caring for the  Amiga   6-1
cautions   See  warnings
centering the monitor display   7-4
Change  Printer  Screen   7-6
changing the  Pointer   A-12
choosing menu items   4-9
cleaning the mouse   6-3
Clean Up   4-32

Index        I-1

`-

-



-'

-

`-

CLI
icon for   7-4
making the  CLI  available   7-4

clicking   3-9
Clock   A-2
Close   4-24
Close  Gadget

using   4-24
closing windows   4-24
color printers   5-3
colors

changing Workbench colors   7-5
for screens   4-4

Command Line  Interface   See  CLI
commands in menus   4-10
composite  video   See  NTSC
connecting audio  equipment   2-10
connectors   2-2
connectors

audio   2-2
care  of   6-2
disk drive   2-2
keyboard   2-4
NTSC   2-2
parallel   2-2
pin  assignments for   7-10
RGB   2-2
seria.I   2-2
warning about   2-3

controlling the Workbench   4-4
copying  disks   4-31

making backup  copies   6-5
creating  a. project   3-18
cursor keys

moving Pointer with   3-8

date and time.  changing   7-2
Demos drawer   A-1
demonstrations  of graphics   A-1
diaLgnostic  messages,  displaying   4-33
Discard   4-16,  4-17
discarding drawers   4-17
discarding projects   4-15,  4-16
discarding tools   4-15,  4-16

I-2        Index

disk  drives
adding a disk drive   5-3
using   3-4

disk  drive  light   3-5
wa.rnings  about   3-5,  6-5

disk gauge   4-25
disks

as  drawers   4-17
care  of   6-5
copying   4-31
disk  gauge   4-25
duplicating   3-14,  4-31
freeing  disk  space   4-25
how  to  insert   3-4
icons for   4-3
initializing   4-30
making backup  copies   6-5
opening   3-13
opera.tions  involving   4-30

preparing new  disks   4-30
properties  of   4-17
protect tabs  on   3-2
reclaiming disk  space   4-25
removing   3-6
renaming   4-32
storage in   4-25
using   3-2
working  disks    3~14

display
changing size  of text  on   7-4
centering   7-4

Display Centering Gadget   7-4
dot-matrix printers   5-3
double-click

changing the delay for   7-4
double-clicking

to  open a tool   3-20
Drag  Bar

for windows   4-19
dragging   4-8
dragging screens   4-26
dragging windows   4-20
drawers   4-16

creating   4-17



Demos   A-1
disca.rding    4-17
duplicating   4-17
Empty   4-17
icons  for   4-3
moving   4-16

moving to  a new disk   4-32
operations  involving   4-16
renaming   4-17
Utilities    3-18

Duplicate   4-14
duplicating  drawers  with   4-17

duplicating  disks    3-14,  4-31
duplica.ting  drawers    4-17
duplicating  projects    4-14
duplicating  tools    4-14

Empty  Trash   4-17
error   messages

displa.ying   4-33
error numbers   A-10
exit gadgets   4-30
Extended  Selection   4-7
external  disk  drives    5-3
Extras  disk   3-2

FCC requirements   Copyright  Page,  5-2,  7-17
Federal  Communications  Commission   See  FCC
freeing  disk  spa.ce    4-25
Front  Gadget

for  windows    4-19
for  screens   4-27

gadgets
Back Gadget   4-19,  4-28
Close  Gadget   4-24
Displa,y  Centering  Gadget   7-4
Drag  Bar   4-19
exit   4-30
for  Preferences   3-18
Front  Gadget   4-19,  4-27
ghost   4-19
in  windows   4-18
Scroll  Bar   4-19

Sizing  Gadget   4-19
unavailable   4-19

game  controller  connectors
pin assignments  for   7-15

ghost  gadgets   4-19
ghost menu items   4-11
glossary    C+1
Gra.phicra.ft    3-1

manual for  1-3
graphics,  demonstrations  of   A-1
highlighting   3-10
humidity,  acceptable  range  for   7-19

icons
dragging   4-8
for Workbench  disk   3-6
highlighted   3-10
on  the Workbench   3-6
selecting   3-9
straightening up   4-32

Image  (printer  setting)    7-9
Info   4-15
Initia.Iize    4-30
initia.Iizing  disks    4-30

ink-jet  printers    5-3
input/output  connectors   7-10
interfaces    See  cz/so  connectors

list  of.   7-19

interference,  radio  and television   5-2,  7-17
Intuition..    The  Amiga  User  Interface   1-3

key repeat speed,  changing   7-3
keyboard   2-1

attaching   2-4
care  of   6-2
changing the  tilt  of   2-5
folding legs  on   2-5
illustration  of   2-2
storing under main unit   2-5

keyboard cable   2-1
warning about   6-2
illustration   2-2

Kicksta.rt  disk   3-2
inserting   3-4

Index        I-3

-/

RE

-



I.ast  Error   4-33
`/          Left MaLrgin  (printer setting)   7-7

letter-quality printers    5-3
light  pen,  connector  for   7-15
load limit for main unit   6-2

``_

`-

magnets,  precautions  about   6-2,  6-5
main unit   2-1

weight it  can support   6-2
margins for printing,  specifying   7-7
memory   3-16

use  in multitasksing   4-14
memory meter   4-28
Menu Bar   3-11
Menu button   3-11
menu  shortcut   4-12
menu  titles   3-12
menus

browsing through   3-13
choosing  more  tha.n  one  item   4-12
commands in   4-10

ghost  items  in   4-11
Menu  Ba.r   3-11
Multiple  Choice   4-12
options  in   4-10
showing menu titles   4-8
titles  of   3-11
using   3-11
using without  a mouse   3-14
unavailable  items  in   4-11

messages,  AmigaDOS   A-10
messages,    error

displaying errors  4-33
meter,  memory   4-28
microdisks   See  disks
modulaLtor,  TV   2-9

monitors
composite video   2-7
NTSC   2-7
ROB   2-7
using  a  television  as  a  monitor   2-7
attaching   2-7
care  of   6-2
centering the  display   7-4

I-4         Index

changing  size  of text  displayed  on  7-4
differences between   2-7
number  of  chara.cters  displayed   2-7
sound  connections  for   2-11

mouse   2-1
attaching   2-6
buttons   3-9
care  of   6-2
changing mouse  speed   7-3
cleaning   6-3
illustration  of   2-2
Menu button on   3-11
moving  the  Pointer without  a  mouse   3-8

pin  assignments  for  connectors   7-15
room required for   2-6
running out of room for the  mouse   3-8
selecting without  a  mouse    3-10
Selection  button  on   3-9
using  the  Amiga  without  a.  mouse   4-13

mouse ball   2-6,  6-3
mouse buttons

clicking    3-9

mouse  connectors

pin  assingments  for   7-15
mouseless  operation   4-13

selecting    3-10
moving  drawers   4-16

to  a  new  disk   4-32
moving  projects    4-16

to  a new  disk   4-32
moving  screens  to  the  back   4-28
moving  tools    4-16

to  a  new  disk   4-32
moving  windows  to  the  front   4-21
Multiple  Choice    4-12
multita,sking   4-14

Notepad   A-4
introduction  to    3-18

NTSC connector   2-9
on  televisions   2-7

NTSC monitors
connecting   2-9
text  size  on   7-4



on/off switch    3-3
Open    3-18
opening  disks    3-13
opening projects   4-14
opening  tools    3-18,  4-14

by  double-clicking  the  Selection button    3-20
operating temperature   6-2
operations  involving  disks    4~30
options,  menu   4-10

Paper  Size  (printer  setting)    7-7
Paper  Type  (printer  setting)    7-7

parallel  connector
pin  assignments  for   7-13

pin  assignments  for  connectors   7-10
Pitch  (printer  setting)    7-8

pixels
number of in  screens   4-3

Plug  'n  Print  Cartridge   5-3

plugging in the  Amiga   2-13
point  (of the  Pointer)    A-13
Pointer

cha.nging   A-13
changing  Pointer  speed   7-3
editing   A-13

moving   3-7,  4-5
moving  without  a  mouse    3-8

point  of   4-5
Wait  Pointer   4-6

pointing   3-7,  4-5
ports    See  connectors
power  cord

illustration  of   2-2

power,  requirements  for   7-19
precautions    See  wa.rnings
precautions  for add-ons   5-2
Preferences   7-2

changing the  Pointer with   A-12

getting back  settings   7-10
introduction  to    3-17
saving  settings    7-10
settings  for   7-2
using  settings    7-10

preparing  disks  for use   4-30

Printer  GraLphics  Screen   7-8

printers
a.dding   7-6
atta.ching   7-6
installing   7-6
list  of supported  printers    5-3
Preferences  settings  for   7-6

properties  of   3-18
specifying parallel  or  serial   7-7

projects
crea,ting   3-18
discarding   4-15
duplicating   4-14

getting informa.tion  about   4-15
moving   4-16
moving to  a new  disk   4-32
opening   4-14
renaming   4-15
reopening  a  project   3-21
saving    3-21

protect tabs   3-2
protecting  disks    3-2
pushing windows  to  the back   4-21
pushing screens  to  the back   4-28
putting together  the  Amiga   2-1

Quality  (printer  setting)    7-7

radio  a.nd  television  interference    5-2
RAM

adding  RAM  to the  Amiga   5-2
meter  for  a,va,ila.ble  RAM   4-28

random-access  memory   See  RAM
RGB  monitor

a.ttaching   2-8
reclaiming disk  space   4-25
Redraw   4-33
redra.wing  the  Workbench   4-33
removing disks   3-6

warning about   3-5
Rename   4-14

renaming drawers  with   4-17
renaming disks   4-32
renaming drawers   4-17

Index        I-5

`-

`-

L-



renaming projects   4-15

~'         renaming tools   4-15
requester

operations  involving   4-29

properties  of  3-15,  4-29
responding  to   4-30

resetting  the  Workbench    3-16,  4-32

resolution,  screen   4-4
RGB  connector

pin  assignments  for   7-14
RGB  monitors

description  of   2-7
text  size  on   7-4

RIght  Margin  (printer  setting)    7-7
screens

a.ttributes  of   4-4
changing  colors  in  the  Workbench  screen   7-5
dragging   4-26
moving in front   4-27
moving   4-26
opera.tions  involving   4-25

properties  of   4-25
redrawing   4-33`-

Scroll  Arrow   4-22
Scroll  Bar

for  windows   4-22
Scroll  Box   4-22
scrolling windows   4-22
selected  window   4-18
selecting

Extended  Selection   4-7
icons    3-9
selecting  more  than  one  icon   4-7
with  the  mouse   4-6
without  a mouse   3-10

Selection button
selecting with    3-9

selection  shortcuts   4-12
for Workbench  screen   4-28

serial  connector
illustration  of   2-2

serial port
setting the baud rate   7-5`-

I-6         Index

Service  Centsrs    6-2
setting the  date  and time   7-2
settings,  Preferences    3-17
settings  for  printers   7-6
Shade  (printer  setting)    7-9
shielded  cables  for add-ons   5-2
SHIFT  key

for  Extended  Selection   4-7
shortcuts

for workbench  screen     4-28
menu   4-12
selection   4-12

size  of text,  changing   7-4
Sizing Gadget   4-20
sizing  windows   4-20
Sna.pshot   4-33
Spacing  (printer  setting)    7-8
specifications  for  the  Amiga   7-18
stereo,  connecting  an  AmigaL  to   2-10
straightening up  icons   4-32
sunlight,  precautions  about   6-2
switch box,  TV   2-9

television

attaching to  an Amiga   2-9
NTSC  connectors  on   2-7
using  as  a monitor   2-7

television  interference    5-2,  7-17
temperature,  opera,ting   6-2
text

changing  size  of on  the  display   7-4
Textcraft     1-3
Threshold  (printer  setting)    7-9
tilt,  keyboard   2-5
time

changing   7-2
showing   A-2

Title  Ba.r

messages  displayed  in   4-33
tools

using   3-17
Clock   A-2
demonstration  tools   4-33
discarding   4-15



duplicating   4-14

getting information  about   4-15
Graphicraft   3-1
icons  for   4-3
moving   4-16
moving  to  a  new  disk   4-32
Notepad   A-4
opening   4-14
renaming   4-15

Trashcan
a.s  a.  drawer   4-17
discarding  drawers  using   4-17
emptying   4-17
freeing  disk  spa.ce  with   4-25

getting items  out   4-15
icon  for   4-3

properties  of   4-17
tuning on the Amiga   3-3
TV modulator

attaching  a  television  with   2-9
TV  Modula.tor  connector

pin  assignments  for   7-15
TV switch box

attaching  a  television with   2-9

unavailable  menu  items             4-11
usingatool     3-17
using  disks    3-2
using  menus    3-11
using the Workbench   4-1

ventilation  slots   2-13
video  a.ttributes    4-3

video  ca.ble

attaching RGB  monitor with   2-8
video  monitor   See  monitor

Wa.it  Pointer   4-6
warnings

about add-ons   5-2
about  assembling  the  AmigaL   2-3
about cables   6-2
about  connectors   7-11
about  copying  disks   4-31

about  discarding tools  and  projects   4-16
about  discarding drawers   4-17
about  initializing  disks   4-30
about magnets   6-2,  6-5
about moisture   6-1
about removing disks   3-5
about resetting   3-16,  4-32

about  sunlight   6-2
about the  case   6-2
about  the  keyboard   6-2
aLbout  turning  on  the  Amiga   3-3

warranty information   2-1
windows

closing   4-24
components  of   4-3
dragging   4-20
for tools   3-17

gaLdgets  in    4-18
moving to  the  front   4-21
opening   3-13
opera,tions  involving   4-18
overlapping   4-18

properties  of   4-18
pushing to  the back   4-21
scrolling   4-22
selecting   4-18
sizing   4-20

Workbench
chaLnging the  colors    7-5
control techniques   4-4
illustration  of   3-6
redrawing the  screen   4-33
resetting   4-32
title  bar  for   3-6
using   4-1

Workbench disk   3-2
inserting   3-6

Workbench operations   4-13
Workbench screen   4-2

shortcuts   for   4-28
Workbench tools   A-1
working  disks   3-14

Y  a.da.pter   2-11

Index        I-7

``-

`-`

`-



/-

I-



-

EE

Introduction to
Amiga Appendix Addendum

Your Workbench upgrade disk contains two additional tools that are not on
the original Workbench disk, the Calculator and the Icon Editor. Appendix A of
the Introduction to Amiga manual tells you how to use the other tools on the
Workbench disk. The information  explaining the new Calculator and  Icon
Editor tools is contained in the following pages, to be added to your manual as
Appendix D (The Calculator) and Appendix E (The Icon Editor).

PART NUMBER SIS-675-04



``

\/`~

RE



Appendix D

The Calculator

The  Calculator  is  a  standard  four-function  calculator  you  can  use  to  add,
subtract,  multiply,  and  divide numbers.   You can find the  Calculator in the
Utilities  drawer  on  the  Workbench.

Opening  the  Calculator

You open the  Calculator by  selecting its icon,  then  choosing Open from the
Workbench  menu.    When  you  do,  a  window  for  the  Calculator  appears.

The  calculator         D-1

`-

EE

`-



The  Calculator Keys

In   the   Calculator   window,   each   of   the   Calculator's   ``keys"   is   a   gadget.
When the  Calculator  window  is  selected,  there  are  two  ways  you  can  "press
a  key„:

•      Select   the   gadget   by   pointing   within   it,   then   clicking   the   Selection
button.

•      For  all  but  the  <-and  +-"keys,"   type  the   character  or   characters
shown  in  the  gadget.    For  example,  you  can  clear  the  current  entry  by
pressing  the  C  key  on  the  keyboard,  then  the  E  key.

The keys  for digits,  the decimal point,  and  addition  and  subtraction  are the
same  as those  on  other calculators.   To  multiply,  use  the  *  key.    To  divide,
use  the  /  key.

Selecting  the  CE  key  clears  the  current  entry,  while  selecting  the  CA  key
clears  the  current  entry  and  any  previous  entries.

Pressing the  +  key    changes  the  sign  of  the  current  entry.    If  the  current
entry   is   a   positive   number,   it   is   changed   to   the   negative   number   that
corresponds  to  it.    If  the  entry  is  negative,  it  becomes  positive.

When  you're  entering  a  number,  pressing  the  <-  key  deletes  the  last  digit
you  entered.

To  get  a result,  use the = key.    From  the  keyboard,  you  can  get  a  result by
pressing  either  the  =  key  or  the  ENTER  key.

Closing the  Calculator

To  close  the  Calculator,  select  the  Close  gadget  in  the  upper  left  corner  of
the  Calculator  window.

D-2         The  calculator

-

-

-



Appendix E

The Icon Editor

With the  Icon  Editor,  you  can  change  the  appearance  of icons  that  appear
on the Workbench.   You can find the Icon  Editor in the  System drawer on
the  Workbench.

To use the Icon Editor,  you must be familiar with the Amiga Disk Operating
System  (AmigaDOS)  and the  conventions  it  uses  for  file  names.    To  learn
about  AmigaDOS,  see  the  Am.gaDOS  User's  A4anuaj.

If you  are  a  software  developer,  you  can  also use  the  Icon  Editor  to  create
icons  for  new  tools,  projects,   and  drawers.    To  learn  how  to  create  new
±cons,  see  the  Amiga  ROM  Kernel  Manual.

`-

EE

`- The  Icon  Editor         E-1



Opening the Icon Editor

You  open  the  Icon  Editor  by  selecting  its  icon,  then  choosing  Open  from
the   Workbench   menu.      When   you   do,   a   window   for  the   Icon   Editor
appears.      Next,   a   requester   appears   in   the   window   that   describes   the
different   kinds   of   icons.       Select   the    OK   gadget   to   continue.        (For
information   about  the   different   icon  types,   see  the   A77t!.go   ROA4  Kerne/
Manual.)

Loading  an  Icon

To  select  an  icon  you  want to  change,  first  select  a  frame-one  of the  nine
boxes to the right  of the  Icon  Editor window-by pointing within the  frame,
then  clicking the  Selection  button.    When  you  first  open  the  Icon  Editor,
each  of the nine  frames  contains the  Icon  Editor icon.   The  icon you  select
will  replace  what  appears  in  the  currently  selected  frame.     Next,   choose
Load  Data  from  the  Disk  menu.    In  the  requester  that  appears,  select  the
gadget  immediately  below  the  words   "Enter  Icon   Name   (  .info  Will   Be
Added)",  then  enter  the  AmigaDOS  description  for  the  file  or  directory
whose  icon  you  want  to  change.    This  description  can  be  either:

•      the  complete  AmigaDOS  file  or  directory  description.

•      an  abbreviated  description  that  specifies  the  relationship  of  the  file  or
directory  to  the  directory  in  which  the  Icon  Editor  resides.

For  example,  you  can  load  the  icon  for  the  Trashcan  by  entering  either:

df o : Trashcan

/Trashcan

E-2         The  Icon  Editor

RE

-,

`-



`-

'ERE

NOTE:   the  icon  fypes shown in  the  requester that  appears  when  you  open
the  Icon  Editor  are  not  the  names  of  icons.    To  find  the  name  of  a  file
whose  icon  you  want  to  change,  use  the  AmigaDOS  DIR  command.

After  you  select  the  gadget,  characters  you  type  appear  to  the  left  of  the
Text  Cursor  (the marker that appears in the  gadget when you  select  it).   To
move  the  cursor,  use  the  left  and  right  cursor  keys.

There may already be text in the gadget when you  select it.   You  can  delete
characters  at and to the  right of the  Text  Cursor by pressing the  DEL key.
Press  the  BACKSPACE  key  to  delete  characters  to  the  left  of  the  Text
Cursor.

There are shortcuts you can use to change what appears in the  gadget and to
move  the  Text  Cursor:

•      Press the right Amiga  key and  Q key at the  same time to  get back what
was  in  the  gadget  before  you  selected  it.

•      Press the right Amiga key and the X key at the same time to  erase  what
appears  in  the  gadget.

•      Press the  SHIFT key and the left cursor key at the  same  time  to  move
the  Text  Cursor  to  the  leftmost  character  in  the  gadget.

•     Press the SHIFT key and the right cursor key at the same time to move
the  Text  Cursor  to  the  right  of the  rightmost  character  in  the  gadget.

When you've finished entering the file description,  select Load Icon Image.
If  you  decide  not  to  select  an  icon,  select  Cancel  The  Load.

Selecting  Additional  Icons

With the Icon Editor,  you can work with up to  nine icons  at the  same time.
To  select  an  additional  icon,  first  select  the  frame  in  which  you  want  the
icon  to  appear,  then  choose  Load  Data  from  the  Disk  menu.

The  Icon  Editor         E-3



Changing  an Icon

A magnified view of the  currently selected frame  is  shown  at the  left  of the
Icon  Editor window.   To  change the  appearance  of  an  icon,  you  select the
frame in which it appears,  then change what appears in the magnified view.
The  techniques  for  changing the  view  are  described  below.

Changing  an  Icon's  Colors

To  change  the  color  of an  individual  pixel  in  an  icon,  choose  a  color  from
the  Color  menu,  point  to  the  pixel  you  want  to  change  in  the  magnified
view, then click the Selection button.   By holding down the  Selection button
while  you  slowly  move  the  mouse,  you  can  add  color  to  larger  areas.

Filling  Areas

With the Icon Editor's Flood Fill feature,  you can fill a contiguous area that
is  all the  same  color  with  another  color.    To  fill  an  area,  choose  the  color
you want to fill with from the  Color menu,  then  choose  Flood  Fill from the
Misc menu.   Next,  point to the  area in the magnified  view that you want to
fill,  then  click  the  Selection  button.

Adding Text  to  an  Icon

There  are  six  steps  to  adding  text  to  an  icon:

1.    Choose  Write  Into  Frame  from  the  Text  menu.

2.     In  the  requester that  appears,  select  the  gadget  immediately  below  the
words  "Icon  Text,"  then  enter up  to  eight  characters  that  you  want  to
add to the  icon.   The  characters you type  appear to the  left of the  Text

E-4         The  Icon  Editor

-

-



RE

d'EIE

Cursor  (the  marker that  appears  in the  gadget when  you  select  it).    To
move  the  cursor,  use  the  left  and  right  cursor  keys.

There  may  already  be  text  in  the  gadget  when  you  select  it.  You  can
delete  characters  at  and to the  right  of the  cursor  by  pressing the  DEL
key.   Press the  BACKSPACE key  to  delete  characters to  the  left  of the
Curs0r.

There  are  shortcuts  you  can  use  to  change  what  appears  in  the  gadget
and  to  move  the  Text  Cursor:

•      Press the  right Amiga  key  and  Q  key  at the  same  time to  get back
what  was  in  the  gadget  before  you  selected  it.

•      Press  the  right  Amiga  key  and the  X  key  at the  same  time  to  erase
what  appears  in  the  gadget.

•      Press  the  SHIFT  key  and  the  left  cursor  key  at  the  same  time  to
move  the  Text  Cursor to  the  leftmost  character  in  the  gadget.

•     Press the  SHIFT key  and the  right  cursor  key  at the  same  time  to
move the Text  Cursor to the right of the rightmost character in the
gadget.

3.    Select  the  foreground  and  background  colors  for  the  text.     (How  the
foreground  and background colors  are used to  display text  depends  on
the  display  mode  you  select.     Display  modes  for  text  are  described
below.)      To   change   the   foreground   color,   point   within   the   color
immediately   to   the   right   of   the   word   Foreground,   then   click   the
Selection  button  one  or  more  times  until  the  color  you  want  appears.
Select  the  background  color  in  the  same  way.

4.    There  is  only  font  you  can  choose  for  your  text.     This  font,   called
Topaz,  is the  same  one used by  the  Workbench  for  menus  and  icons.
You  can,  however,  select one  of two font  sizes:   TOPAZ_SIXTY is the
larger,  TOPAZ  EIGHTY  the  smaller.    If  the  size  you  want  does  not

The  Icon  Editor         E-5



appear  in  the  gadget  labeled  Font,  select  the  gadget  to  change  to  the
other  size.

5.     Select  one  of  the  four  display  modes  for  text.    These  modes  are:

•     JAM1,   where  text  is  shown  in  the  currently  selected  foreground
color  without  a  background

•     JAM2,   where  text  is  shown  in  the  foreground  color  against  the
currently  selected  background  color

•     COMPLEMENT,  where  each  pixel  that  makes  up  the  text  is  the
color "opposite" the color of the pixel that it replaces.   (To see how
this works,  add text to an icon containing all four colors,  then move
the  text  as  described  below.)

•     INVERSVID, where the text is surrounded by the currently selected
foreground color.   When you add INVERSVID text to  an icon,  the
background for the text replaces existing pixels in the icon while the
text  itself  does  not.

To  change  the  display  mode,  point  within  the  gadget  labeled  Mode,
then click the Selection button one or more times until the name of the
mode you want appears.   In the gadget,  note that the name of the mode
is displayed in the  gadget using the  currently selected  foreground color,
background  color,  and  display  mode.

6.    Select the  Position  gadget to  add the  text to  the  icon.   In the  requester
that appears,  select the arrows to move the text up,  down.  left,  or right.
Select the  Single  gadget if you want the text to move  only a  single pixel
each  time  you  select  an  arrow.    Select  Repeat  if  you  want  the  text  to
continue to move if you hold down the Selection button after you select
an  arrow.     When  the  text  is  where  you  want  it,   select  OK.     If  you
change  your  mind,  select  Cancel  to  return  to  the  previous  requester
without  adding  text  to  the  icon.

E-6         The  Icon  Editor

I-

`-



I-

-

`-

When you're through adding text.  select OK.   If you want to start over with
the icon as it was before you chose Write Into Frame,  select Reset.   If you
decide  you  don.t  want to  add text to  the  icon,  select  Cancel.

Using  the  Undo  Feature

If you think that a change you're about to make to an icon may not turn out
the way you want,  choose Snapshot Frame from the  Copy menu before you
make  the  change.     When  you  do,  the  Icon  Editor  saves  a  copy  of  the
currently selected frame.   If things go wrong, you can get back what you had
before  by  choosing  Undo  Frame  from the  Copy  menu.

NOTE:   When you choose Undo Frame. the frame that was saved when last
chose  Snapshot  Frame  replaces the  currently selected  frame.    After  you
choose  Undo  Frame,   the  previous  contents  of  the  currently  selected
frame  are  no longer available.

Working with Frames

The Icon Editor's nine frames let you work with more than one icon at the
same time.   You  can  also use the  frames to keep  and  compare  more than
one  version  of  the  same  icon.    Listed  below  are  techniques  you  can  use
when  working with  frames.

Copying  a Frame

To  copy  a  frame,  first  select  the  frame  into  which  you  want  to  make  the
copy.    Next,  choose  the  frame  you  want  to  copy  from  the  submenu  that
appears  when  you  point to  From  Frame  in the  Copy  menu.

The  Icon  Editor        E-7



Moving  the  Image within  a  Frame

To move the image within a frame, choose In-Frame from the Move menu.
In  the  requester  that  appears,   select  the  arrows  to  move  the  image  up,
down,  left,  or right.   Select the Single gadget if you want the image to move
only a single pixel each time you select an arrow.   Select Repeat if you want
the image to continue to move if you hold  down the  Selection button when
you  select  an  arrow.

The  square  gadget  surrounded  by  the  arrows  is  the  Restore  gadget.    Select
this gadget to put the image back where it was before you  chose  In-Frame.

When the image is where you want it,  select OK.   If you change your mind,
select  Cancel  to  get back  what  you  had  before  you  chose  In-Frame.

Exchanging  Frames

To  switch  the  positions  of two  frames,  first  select  one  of the  two  frames.
Next,  choose  the  other  frame  from  that  submenu  that  appears  when  you
point to  Exchange  With  Frame  in the  Move  menu.

Merging  Frames

To combine the contents of two frames, first select one of the frames.   (The
combination  you  create  will  replace  what  appears  in  this  frame.)     Next,
choose the  other  frame  from the  submenu that  appears  when  you  point to
Merge  With  Frame  in  the  Copy  menu.

When pixels in the two frames overlap, the color that appears is determined
as  follows:

•     If  color  0  (the  color  at  the  top  of the  Color  menu)  overlaps  with  any
other  color,  the  other  color  is  displayed.

E-8         The  Icon  Editor

`-

-



EE

EE

EE

•     If color 3  (the color at the bottom of the Color menu)  overlaps with any
other  color,  color  3  is  displayed.

•     If  colors   1  and  2  (the  two  colors  in  the  middle  of  the  Color  menu)
overlap,   color   3   (the   color   at   the   bottom   of   the   Color   menu)   is
displayed.

Highlighting an Icon

When you select an icon on the Workbench,  it is highlighted to indicate that
it's  selected.    There  are  two  ways  an  icon  can  be  highlighted:

•      It can be shown in inverse video.   In inverse video,  any part of an icon
normally shown using color  0  (the color at the top of the  Color menu)
becomes  color  3  (the  color at the bottom of the  Color menu);   color  1
(the  color  just  below  color  0  in  the  menu)  becomes  color  2;  color  2
becomes  color  1;  color  3  becomes  Color  0.

•      It can be  "back filled."   A back filled icon is the same  as  an icon shown
in  inverse  video,   with  one  exception:     contiguous  areas   of  an   icon
normally  shown  in  color  0  that  adjoin  any  of the  borders  of  the  icon
remain  color  0  when  the  icon  is  highlighted.

To highlight an icon in inverse video,  choose Inverse from the HiLite menu
before  you  save  the  icon.    To  backfill  a  highlighted  icon,  choose  Backfill
from  the  HiLite  menu  before  you  save  the  icon.

Specifying the Border Width

Below  each  icon  on  the  Workbench  is  the  name  of  the  file  that  the  icon
represents.    The  Icon  Editor  lets  you  choose  either  to  put  one  blank  line
between the icon.s image and its name or not to put space between the icon
the image.     From the Misc menu,  choose either  0  (for no space)  or  1  (for

The  Icon  Editor        E-9



one line between the image  and the name)  from the submenu that appears
when  you  point  to  the  Set  Bottom  Border  item.

Saving  an Icon

When  you  save  an  icon,  you  replace  an  icon  on  the  Workbench  with  the
icon  in  the  currently  selected  frame.    However,  the  type  of  the  icon  you
replace  and  the  type  of  the  icon  that  was  most  recently  loaded  into  the
currently selected frame must be the same.   There are five types of icons:

REPRESENTS

Disk  drawers

EXAMPLE

Workbench  disk  icon

Drawer                     Drawers  other than                        System  icon
disk  drawers

Tool                                         Tools                                 Icon  Editor  icon

Projecc                                 Projects                       Icon  for  a  Notepad  note

Garbage              A  drawer that  cannot be                Trashcan  icon
moved to  another  drawer

When you open the Icon Editor, the Icon Editor icon is loaded into all nine
frames.     Because  the  Icon  Editor  icon  represents  a  tool,  you  must  load
another  icon  if  you  want to  replace  an  icon  of another type.

There  are  five  steps  to  saving  an  icon:

1.    Select  the  frame  containing  the  icon.

E-10         The  Icon  Editor

-

I-



EE

-J

`-

2.    Choose Save  Data from the Disk menu.   In the requester that appears,
select  the   gadget   immediately   below   the   words   "Enter   Icon   Name
(  .info  Will Be  Added)",  then enter the  AmigaDOS  description for the
file  or  directory  whose  icon  you  want to  replace.    This  description  can
be  either:

•     the  complete  AmigaDOS  file  or  directory  description

•     an abbreviated  description that  specifies the relationship  of the file
or  directory to the  directory in  which the  Icon  Editor  resides.    For
example.  you  can  replace  the  icon  for  the  Trashcan  by  entering
either:

dfo : Trashcan

/Trashcan

After you select the gadget,  characters you type appear to the left of the
Text Cursor (the marker that appears in the gadget when you select it) .
To  move  the  cursor,  use  the  left  and  right  cursor  keys.

There  may  already  be  text  in  the  gadget  when  you  select  it.    You  can
delete characters  at and to the right of the Text  Cursor by pressing the
DEL key.   Press the BACKSPACE key to delete characters to the left of
the  Text  Cursor.

There  are  shortcuts  you  can use  to  change  what  appears  in  the  gadget
and  to  move  the  Text  Cursor:

•     Press the  right Amiga key  and  Q  key  at the  same time to  get back
what  was  in  the  gadget  before  you  selected  it.

•     Press the right Amiga key  and the  X key at the  same time to  erase
what  appears  in  the  gadget.

•     Press  the  SHIFT  key  and  the  left  cursor  key  at  the  same  time  to
move  the  Text  Cursor  to  the  leftmost  character  in  the  gadget.

The  Icon  Editor         E-11



•     Press the  SHIFT key  and the  right  cursor  key  at the  same  time  to
move the Text Cursor to the right of the  rightmost character in the
gadget.

3.    When  you've  finished  entering the  file  description,  there  are  two  ways
to  save  the  icon:

•     If you want the icon to include the entire image that's in the frame,
select  Save  Full  Image.

•     If you want the icon to include only a part of the image that's in the
frame,  select  Frame  and  Save.    Next,  "frame"  within  a  rectangle
the  part  of  the  magnified  view  you  want  to  include  in  the  icon:
point to  a place  in the  magnified view where  you want the top  left
corner of the  rectangle,  then click the  Selection button.    Move  the
mouse  to  change  the  size  of  the  rectangle.    When  you've  framed
within the rectangle the part the image you want,  click the Selection
button  a  second time  to  save  the  icon.    (If you  change  your  mind
about saving the icon after you've selected the top left corner,  move
the  Pointer  outside  the  magnified  view  and  click  a  mouse  button.)

If  you  decide  not  to  save  an  icon  after  you've  chosen  Save  Data,  select
Cancel  the  Save  in the  requester.

When you look on the Workbench for an icon you've saved,  remember that
it doesn't replace the previous icon until the next time you open the drawer
that  contains  it.

Stopping the Icon Editor

When you are finished using the Icon Editor,  close it by selecting the  Close
Gadget  in  the  upper  left  corner  of the  Icon  Editor  window.

E-12         The  Icon  Editor

EE

-



•_

``,.\

```



-'

`-

=commodore
Commodore  Business  Machines,  lno.

1200  Wilson  Drive,  West  Chester,  PA  19380

Commodore  Business  Machines,  Limited
3370  Pharmacy  Avenue,  Agincourt,  Ontario,  MIW 2K4

Copyright  1985  Commodore-Amiga,  lnc.

`-



AMIGA:
(-/

unllllllL= i

EEgERE

`.-

::E`s¥;n__i,,,rse.;-_,i¥   _  _

Amiga Basic

--` Microsoft® BASIC for the Amiga
RE



-

RE
a



-

`-

-

4JIAtiGfl

Amiga Basic



-

Amiga  Basic  was  developed  by  Microsoft  Corporation.

Microsoft®  BASIC  for  the  Amiga

COPYBIGHT

Thls  manual  Copyrlght©Commodore-Amlga,   lnc.   and  Mlcrosoft  Corporatlon,1985,   All   Fights  Beserved.      Thls

fr=duiTi:n:rmma%cnhqtn'e!Te:E:L;e°rf:FfaLti'th¥u:°pprji::'c%hn:te:t?Pj!nedvi,r|:i:#r%#'ct:amn:#::_a;+i8::::ct.°anyeleetronlc

This  software  Copyright  ©  Mlcrosoft   Corporation,   1985,   All   Fights  Pleservod.      The  dlstrlbution   and   sale  of  thls
product are Intended for the use of the original purchaser only.   Lawful users of this program are hereby llcensed only
to read the program,  from  its medium  Into memory of a computer,  solely for the purpose of executlng the program.
Dupllcatlng,   copying,   selling,   or  otherwlse  dlstrlbutlng  thls  product  ls  a  vlolatlon  of  the  law.

DISCLAIMEPI

THE  PBOGBAM  IS  PF`OVIDED  "AS  IS"    WITHOUT WAPIBANTY  OF  ANY  KIND,   EITHEB  EXPF`ESSED  08  IMPLIED,
lNCLUDING,   BUT  NOT  LIMITED  TO,   THE  IMPLIED  WABBANTIES  OF  MEBCHANTABILITY  AND  FITNESS  FOPI  A
PAF`TICULAP  PUBPOSE.    THE  ENTIBE  BISK  AS  TO  THE  BESuLTS  AND  PEBFOBMANCE  OF  THE  PROGBAM  IS

683;uMMOEDDOB¥_x£,uG.A,srNoOTLBBiF:5ELOLGEB%yA%%3%EEPEEEECNT+ypEE;5gTt6FNRLTONTECTEHSESADPlEyESLEOPlpvF8,NOG?
F`EPAIB  08  COPIBECTION.    FUBTHEB,   COMMODOBE-AMIGA  DOES  NOT  WABBANT,   GUABANTEE,   08  MAKE
ANY  BEPBESENTATIONS  BEGABDING  THE  USE  OF,   OF`  THE  BESULTS  OF  THE  USE  OF,   THE  PBOGBAM  IN
TEBMS  OF  COBBECTNESS,  ACCUBACY,   PIELIABILITY,   CUBPENTNESS,  0B  OTHEBWISE;  AND  YOU  BELY  ON
THE  PBOGF`AM AND THE  BESULTS  SOLELY AT YOUB  OWN  PllsK.    IN  NO  EVENT WILL COMMODOBE-AMIGA,
lNC.   BE  LIABLE  FOB  DIBECT,   lNDIBECT,   INCIDENTAL  OPI  CONSEQUENTIAL  DAMAGES  PIESULTING  FBOM  ANY
DEFECT`lN  THE  PBOGPIAM  EVEN  IF  IT  HAS  BEEN  ADVISED  OF  THE  POSSIBLITY  OF  SUCH  DAMAGES.     SOME
LAWS   DO   NOT   ALLOW   THE   EXCLUSION   08   LIMITATION   OF   IMPLIED   WABBANTIES   OP   LIABLITIES   FOB
INCIDENTAL  08  CONSEQUENTIAL  DAMAGES,   SO  THE  ABOVE  LIMITATION  08  EXCLUSION  MAY  NOT  APPLY.

Mlcrosoft  ls  a  registered  trademark  of  Microsoft  Corporatlon.
Amlga  ls  a trademark  of  Commodore-Amlga,  lnc.

PF`lNTED  ln  U.S.A.

CBM  Product  Number 327273-01  Bev  A

REO

`-



Contents

Chapter  1:    Introducing  Amiga  Basic

Chapter  2:    Getting  Started

Chapter  3:    Using  Amiga  Basic

fl-fl

2-1

3-1

Chapter  4:    Editing  and  Debugging  Your programs                4-1

Chapter  5:    Working  with  Files  and  Devices

Chapter  6:    Advanced  Topics

Chapter  7:  Creating  Animated  Images
with the  Object Editor

Chapter  8:    BASIC  Reference

Appendices

Index

A-1

I-1

`-

-

RE



EE

``-

`-



`-

`-

RE

Chapter 1

Introducing Amiga Basic

Who  uses   BASIC?     People   use   the   BASIC  programming
language  for  many  different reasons.    Some  of these  people
are      professional      programmers.             Others       are      not

programmers  at  all,  but  wish  to  run  BASIC  programs  they
have  purchased.     Probably  the  largest  segment  of  BASIC
users  is  made  up  of people  who  write  BASIC  programs  for
their  own  use.    They  may  simply  enjoy  the  mental  exercise
of  programming,  or  they  may  have  special  applications  for
which   they   cannot   buy   ready-made   programs.       Many
BASIC   users    are    students    who    are    studying   computer
science  or using a  computer to  help  with  their  school  work.

Introducing  Amiga  Basic          1-1



All of these people  have  one thing in  common.   They use  BASIC because  it
is  the  universal  language  for  small  computers.     It  is  easy  to  learn,   readily
available,   and  highly  standardized.   It  is  also  a  versatile  language  that  has
been    used    in    the     writing    of    business,     engineering,     and     scientific
applications,  as  well  as  in  the  writing  of  educational  software  and  computer

games.

Amiga  Basic

Whatever your reason for using BASIC,  you will find that  Amiga  Basic  gives

you  all the  well-known  advantages  of  BASIC,  plus the  ease  of use  and  fun
you  expect from Amiga tools.   Amiga Basic puts the full BASIC language  on
your  Amiga  computer,  including  BASIC  statements  used  to  write  graphics,
animation,  and sound programs.   Also,  it  has  all the  familiar  features  of the
Amiga  screen.  Amiga  Basic  has  a  Menu  Bar,  a  Pointer,  and  windows  and
screens,  just  like  other  Amiga  tools  have.

If  you  are  just  starting  to  learn  BASIC,  either  in  a  class  or  on  your  own,
Amiga Basic will fit right in with your course  of study.   Amiga  Basic is based
on  Microsoft BASIC,the most popular programming language  in the  world,
which  works  on  every  major  microcomputer.

If   you  are  an  old  hand  at  BASIC programming,  you'll  want to  try  some  of
the  special  features  of this  version  of  BASIC,  such  as  SOUND  and  WAVE
for making music  and  sounds,  and  GET  and  PUT for  saving  and  retrieving

graphics  by  the  screenful.

1-2          Introducing  Amiga  Basic

`-

`-

EE



About This  Manual

This book describes the Amiga Basic Interpreter.   It assumes you have read
Jnfroc!wcf!.on  fo  Am!.gcz,  and  are  familiar  with  menus,  editing text,  and  using
the  mouse.

The  front  part  of  this  book  (Chapters   1-7)   describes  how  to  use  Amiga
Basic with the Amiga    It includes a few words on getting started and general
instructions  on using the  interpreter,  editing  and  debugging your  programs,
working with  files  and  devices,  some  advanced topics,  and  a  guide  to  using
the  Object  Editor,  a program  written  in  BASIC,  that  lets  you  create  images
to use  in  animations  with your  application programs.   The back part  of this
book  (Chapter  8)  is  a  reference  for  the  BASIC  language.    Use  the  BASIC
reference  section to  read  about  general  characteristics  of the  language,  and
to  look up  the  syntax  and  usage  of  BASIC  statements  and  functions  in  the
Statement  and  Function  Directory.

Special Features  of Amiga Basic

-`

EE

`-

The  Amiga  Basic  interpreter  is  written  in  assembly  language   and  thus  is
small  (80K).   The  core  of Amiga  Basic has been field tested for three  years.
Amiga  Basic  is  a  "standard"  BASIC  in  that  it  will  run  most  programs  that
were  written  in  Microsoft  BASIC  on  most  other  machines.

Ease  of Program  Development

Like    all    languages,    Amiga    Basic    is    always    growing,    changing,     and
improving.    Amiga  continues  to  keep  its  BASIC  interpreter  up  to  date  with
new features.   Here  are some  of the latest features you'll  find in this version
of BASIC.   All of the features  are  described  fully  in the reference  section  of
the  manual.

Introducing  Amiga  Basic          1-3



Support  for Amiga  Application  Programs

Amiga  Basic  provides  the  tools  you  need  to  write  programs  that  work  like
and  look  like  they  were  written  for  the  Amiga.    These  tools  are  especially
important   if  you   are   a   software   developer   who   plans   to   sell   application

programs  for  the  Amiga.

It  is  also  true  that  significant  Macintosh  MS-BASIC  and  IBM-PC  BASIC
applications  can  be  ported  over  to  the  Amiga  extremely  easily.

Mouse  Support

With  the  MOUSE  function,  your  BASIC  program  can  accept  and  respond
to   mouse   input.      The   MOUSE   function   returns   the   coordinates   of   the
mouse  pointer  under  various  conditions   (left  button  up,  left  button  down,
single-click,  double-click,  and  drag).

MENU  Statement

Your  programs  can  display  Amiga-style  menus  created  by  BASIC's  MENU
statement.     This  statement  opens  and  closes  menus  and  highlights  menu
items.    If you  want,  you  can replace  BASIC's  menus  with  your  own  menus,
to  give  your  program  a  completely  ``custom"  look.

Powerful Language Features

Amiga   Basic  provides   a  number  of  powerful  language  features   that  lend
flexibility  to  your  programs.    These  features  include  the  following:

1-4          Introducing  Amiga  Basic

`-

`-

E=u



Block Statements

IF-THEN   ELSE   statements   let   your   program   make   decisions   (lJring

program  execution.    You  can  now  include  multiple  statements  on   :]`e  or
more  lines  after  THEN.

Subprograms

Amiga  Basic allows  subprograms that  have  their  own  local  variables     lJsing
subprograms,  you  can  build  a  library  of  BASIC  routines  that  can  t e  used
with different programs.   You  can  do this  without  concern  about  dur  icating
variable  names  in  the  main  program.

SHARED  Statement

-

`-

`-

The  SHARED  Statement  allows  variables  to  be  shared  between  tl.  i  main

program  and  its  subprograms.

Integer Support

Amiga  Basic  includes  both   16  and  32  bit  integer  support.

Floating Point Support

The  Amiga  version  includes  both  32  and  64  bit  floating  point  sup|:) )lt.

Introducing  Amiga  Basic          1-5



No Line Numbers  Required

Program  lines  do  not  require  line  numbers.    Assigning labels  to  functional
blocks  lets  you  quickly  see  the  control  points  in  your  program.

Alphanumeric  Labels

Alphanumeric line labels beginning with an alphabetical character allow the
use of mnemonic labels to make your programs easier to read and maintain.

Sequential and Random Access  File Support

Both  sequential  and  random  access  files  can  be  created.     Sequential  files
are   easy  to  create,   while   random  access   files   are   flexible   and   quick  in
locating  data,

Device  Independent  I/0  Support  of RS232  and  Parallel Ports

Using  Amiga  Basic's  traditional  disk  file-handling    statements,  a  program
can  direct  both  input  and  output  from  the  screen,  keyboard,  line  printer,
and  RS232  and  parallel  ports.  You  can  open  the  line  printer  or  screen  for
output  as  easily  as  you  open  a  disk  file.

1-6         Introducing  Amiga  Basic

`-

EE



-

`-,

`-

Features That Show Off The Amiga

A  number  of  features  of  Amiga  Basic  enhance  Amiga's  color,   graphics,
animation,  and  sound  capabilities:

•      Four-voice   synchronized   musical   reproduction   through   the

SOUND  and  WAVE  statements

•      Creation      of      audible      speech      through      the      SAY      and
TRANSLATES  statements

•      The   ability  to  save   and  redisplay  screen   images   through  the

GET  and  PUT  statements

•      Full    complement    of    graphic    statements,    such    as    LINE,
CIRCLE,  PAINT,  AREA,  and  AREAFILL

•      Extensive  animation  support  through  the  OBJECT  statements,
the  Object  Editor,  and  the  COLLISION  function.

•      The   ability   to   call   subroutines   written   in   machine   language
through  the  LIBRARY  and  DECLARE  statements

•      Multiple    screens   and   windows   through   the    SCREEN   and
WINDOW  statements.

•      Pull-down  Menus  from  BASIC  and  the  application  programs

All  of these  functions  are  described  in  detail  under  the  related  commands
in  Chapter  8;  the  Object  Editor  is  described  in  Chapter  7.     Some  of  the
functions  are  summarized  below.

Introducing  Amiga  Basic          1-7



SOUND  and WAVE

Amiga  Basic  programs  can  produce  high  quality  sound  for  games,   music
applications,    or   user   alerts.      The   SOUND   statement   emits   a   tone   of
specified frequency,  duration,  and volume.   As  an  option,  the tone  can  also
have  one  of  four  user-defined  "voices."     The  WAVE  statement  lets  you

assign  your  own  Com|)lex  wave forms  to  each  of  the  voices.   SOUND  and
WAVE  can  provide  your  programs  with  a  rich  variety  of  musical  sounds,
from the  complexity of a  string quartet to the  simplicity  of a  whistled tune.

LINE and  CIRCLE

LINE  and   CIRCLE  are  versatile  commands  for  drawing  precise  graphics.
The  LINE  statement  draws  a  line  between  two  points.  The  points  can  be
expressed  as  relative  or  absolute  locations.    By  adding  the  8  option  to  the
LINE  statement,  you  can  draw  a  box.  Another  option,  BF,  fills  in  the  box
with  any  color.

The  CIRCLE  statement  draws  a  circle,  arc,  or  ellipse  according  to  a  given
center  and  radius.    A  color  option  can  be  used  to  draw  the  circle  in  any
color.    Another  option,  aspect,  determines  how  the  radius  is  measured,  so

you  can  adjust  it  to  create  a  variety  of  ellipses.

GET,  PUT,  and  SCROLL

The  GET  statement  saves  groups  of  points  from  the  screen  in  an  array,  so

you   can   store   a   "picture"   of   a   graphic   image   in   memory.      The   PUT
statement  calls  the   array  back  and  puts   it   on  the   screen.   The   SCROLL
statement  lets  you  define  an  area  of  the  screen  and  how  much  and  which
way  you  would  like  it  to  move.

1-8          Introducing  Amiga  Basic

``-

``-

EE



The  Object  Editor

Amiga  Basic  offers  the   Object  Editor,   a  program  written  in  BASIC,   that
helps  you  create  images  of  objects  to  use  for  animations  with  your  Amiga
Basic   applications   programs.      See   Chapter   7   for   details   on   the   Object
Editor.

-

-

-

Learning More About BASIC and the Amiga

This   manual   provides   complete   instructions   for   using  the   Amiga   Basic
Interpreter.     However,   little  training  material  for  BASIC  programming  is
included.   If you are new to  BASIC or need  help  in  learning to program,  we
suggest  you  read  one  of  the  following:

Dwyer,   Thomas   A.,   and   Critchfield,   Margot.   BAS/C   and   ffee   Personcz/
Compufer.   Reading,   Mass.:    Addison-Wesley  Publishing  Co.,1978.

Knecht,   Ken.  A4!.croso/f  BASJC.   Beaverton,   Ore.:   Dilithium  Press,1982.

Boisgontier,   Jacques,   and   Ropiequet,   Suzanne.   A4c.croso/f  BAS/C  cnd  Jfs
Fj./es.   Beaverton,   Ore.:   Dilithium  Press,   1983.

Introducing  Amiga  Basic          1-9



`-



-'

•-

•J

Getting Started

Chapter 2

To  use  Amiga  Basic,  you  need:

•     An   Amiga   computer,    properly   set   up    and
connected.

•      The  Amiga  Extras  disk.

Getting  started          2-1



You  should also  make two backup  copies  of your  Amiga  Basic disk on your
own  blank  disks.  To  start  Amiga  Basic:

•     Turn  on  the  Amiga  power  switch.

•      Put  the  Amiga  Extras  disk  into  the  Amiga  disk  drive.

•      From  the  Workbench,  open  the  Amiga  Basic  icon.

In  a  few  seconds,  you'11  see  the  Amiga  Basic  screen.

Note:    This  tutorial  assumes  the  Amiga  Basic  screen  is  using  the  original
Workbench colors  ( blue for background,  white for foreground,  orange,  and
black) .

At   this   point,   the   cursor   (an   orange   vertical   bar)   appears   in   the   List
window,  and  you  can  either  type  in  a  new  program  or  retrieve  an  existing

program  and  modify  it,  as  you'll  see  in  the  next  section.  Notice  that  the
Title  Bar  in  the  List  window  is  displayed  distinctively  to  indicate  that  it  is
selected,  while  the  Title  Bar  in  the  BASIC  window  is  ghosted  or  displayed
less  distinctively  to  indicate  that  it  is  not  selected.

The  Output  window  in  Amiga  Basic  not  only  lets  you  see  the  results  of  a

program,  it  also  allows  you  to  type  in  commands  directly.    Any  time  you
would  prefer  to  type  in  commands  directly  in  the  Output  window,  click  in
the Title  Bar  of the  Output  window  (entitled  BASIC) .  This process  is  called
selecting  the   Output   window.   Notice   that   BASIC  responds   with  the   Ok

Prompt.

To display the menu titles in the Menu bar,  click in the  Output window then

press  and  hold  down  the  mouse  Menu  button.

-,

•`-,I

-
2 --'1 Getting  Started



E|

EE

`-,

Practice  Session with Amiga  Basic

Time  Required:  Fifteen  Minutes

Back Gadget
Front Gadget
Menu  Bar
Tltle  Bar

Output Wlndow

Selected Wlndow

Llst  Wlndow

Slzlng  Gadget

Now  you  are  ready  to  begin  using  BASIC.

To  display  the  contents  of  the  Amiga  Basic  disk  in  the  Output  window,

•      select  the  output  window.

When  the  Ok  prompt  appears  in  the  window,

®      youtype

files

and

•     press  the  RETURN  key

Getting  started         2-3



You  now  see  the  filenames  being  listed  in  the  Output  window.    When  the
window fills,  the names scroll upwards to make room for more names  at the
bottom of the window.   To halt scrolling,  press the Amiga command key on
the  righhand  side  of the  keyboard  and  the  S key;  to  resume  scrolling,  press
any  key.

Observe  that  filenames  with  the   .bas  suffix  identify  the  programs  you  can
actually  run  (called  executable  programs).

Loading  Picture

Start by  loading the  program  called  Picture.bas.    Picture  is  a  demonstration

program,  written  in  BASIC,  that  comes  on  your  Amiga  Basic  disk.

•      Press  the  mouse  Menu  button  and  point  at  the  Pro].ect  menu
title  in  the  Menu  Bar.    The  menu  items  that  appear  are  New,
Open,   Close,   Save,   Save  As,  and  Quit.

•      Choose  the  open  item.

2-4          Getting  started

•-

`-



`-`,

-

A  requester  appears  on  the  Output  window.

•      Click  the  mouse  Selection  button  in  the  Title  Gadget  labeled
``Name  of  program  to  load'':

0      Type

p i c t,ure . bas

and

•      click  the  OK  Gadget  or  press  the  RETURN  key.

The  Program  Listing  for  Picture

A listing  of the  Picture  program  appears  in the  List  window.    The  name  of
the  Output  window  changes  from  BASIC  to  picture.bas.

You  may  have  expected  to  see  a  line  number  at the  beginning  of  each  line.
In  Amiga  Basic,  line  numbers  are  optional.    To  refer  to  a  particular  line,

give  that  line  a  label  or  a  line  number.    For  example,  the  Picture  program
has   no   line   numbers.      However,   it   has   two   labels:    CheckMouse   and
Movepicture .

Getting  started          2-5



Labels  identify  entry  points

•      from  GOTO  statements executed in other parts  of the program,
and

•      into  subsections  called  from  other  parts.

•      Select  the  Output  window,  then  type

list   CheckMouse

and

•      press  the  RETURN  key.

Notice  that the  List  window  scrolls  to  the  CheckMouse:  label.    However,  if

you  wish  to  edit  in  the  List  window,   you  must  first  select  it.

Uppercase   Reserved   Words:      On   the   Amiga   screen,   BASIC   program
listings    are    very    easy    to    read    because    BASIC's    reserved    words    are
automatically  converted  to  uppercase  as  you  move  from  line  to  line.

2-6          Getting  started

Amlga  Baslc  reserved words
are  ln  uppercase

Other words appear as
entered by user

ER

RE

`-



-

`-

`,

Note  that  when  you  type  a  program  line,  the  reserved  word  doesn't  appear
in  uppercase  until  you  move  from  line  to  line.

What  Picture  Does

Now,  start  the  program  as  follows:

•      To open the output window overthe List window,  choose  show
Output  Window  from  the  Windows  menu.

•      Choose  Start  from  the  Run  menu.

When  program  runs,   a  picture  appears  in  the  Output  window.     You  can
move  this picture  around  by  clicking the  mouse  Selection  button  anywhere
in  the  Output  window.  Try  it.

Getting  started          2-7



Stopping  the  Program

Output from  Picture

Picture  keeps  running  until  you  tell  it  to  stop.

•      Choose  Stop  from  the  Run  menu.

•      Choose  Show  List  Window  from  the  Windows  menu.    The  List
window  comes  forward  again.   To  edit the  program  again  in  the
List  window,   you  must  select  the  List  wiridow.

Moving Through  the  List Window

To  scroll through the  List window line by line,  click in  it  and use  the up  and
down  arrow  keys  located  at  the  lower  right  corner  of  the  Amiga    screen  to
move  up  and  down.

To  move  right  or left  one  character  at  a  time  within  a  program  line,  use  the
right  or  left  arrow  keys.

2-8          Getting  started

I-

EE



-`

iEE

E=|E=

To  move  through  the  program  one  window  at  a time,  press  the  SHIFT key
and  the  up  or  down  arrow  at  the  same  time.

Note:    Throughout  this  manual,  whenever  you  see  two  keys joined  together
with  a  hyphen,  such  as  SHIFT-Up  Arrow,  this  means  that  you  press  and
hold  down the first key  at the  same  time  that  you  press  the  second  key.    So

SHIFT-Up Arrow means to press  and  hold  down the  SHIFT key  while  you
press  the  Up  Arrow  key.

So,   to   move   forward   through   the   program,   window   by   window,   press
SHIFT-Down Arrow.   To move backward through the program,  window by
window,  press  SHIFT-Up  Arrow.

To  move  to  the  first  line  in the  program,  press  ALT-Up  Arrow.    To  move
to  the  last  line  in  the  program,  press  ALT-Down  Arrow.

To move to the right margin of a program line,  press ALT-Right Arrow.   To
move  to  the    left  margin  of  a  program  line,  press  ALT-Left  Arrow.

To   move   75%   through   a   program   line   towards   the   right   margin,   press
SHIFT-Right Arrow.   This is  convenient  for  moving through  extremely long

program   lines.   To   move   75%   through   a   program   line   towards   the   left
margin,  press  SHIFT-Left  Arrow.

If  you   want  to   know   more   about   Picture,   see   Appendix   G,   ``A   Sample
Program,"   for  a  line-by-line  explanation.

Editing  a  BASIC  Program

Editing   an   Amiga   Basic  program   is   similar   to   editing  text   with   a   word

processor.     You  enter  and  edit  all  text  in  the  List  window  using  the  Cut,
Copy,  and  Paste  commands  from  the  Edit  menu.

To  enter new text,  you  select the  insertion point  (the thin  orange  cursor)  by
moving the  Pointer to the  location  where  you  want text,  clicking,  and typing
in  the  desired  characters.

Getting  started          2-9



To    delete    characters    to    the    left    of    the    insertion    point,    press    the
BACKSPACE key.   To select a block of text,  you set the  insertion  point  and
drag  the  mouse.

To  select  a  word,  you  position  the  pointer  over  the  word  and  double-click
the  mouse  Selection  button.

To   make   an   extended   selection,   you   can   click   at   the   beginning   of   the
selection,  move  the  mouse  to  the  end  of the  selection,  and  shift-click  (that
is,  press  and  hold  down  the  SHIFT  key  on  the  Amiga  while  you  click  the
mouse  Selection  button.  You  can  Cut  or  Copy  the  selected  blocks  of  text

just  as  you  would  with  a  word  processor.

To   increase   the   width   of   the   List   window   in   order   to   view   the   entire

program  listing,

•      Press  and  hold  down  the  mouse  Selection  button  in  the  Title
Bar  and  drag  the  entire  List  window  to  the  left.

•      Release  the  Selection  button  and  move  it  to  the  Sizing  Gadget

on   the   lower   right   side.   Press   and   hold   down   the   Selection
button   over   the   Sizing   Gadget   and   drag   it   to   make   the   List
window  wide  enough  to  read  the  program  lines.

•      Release  the   Selection  button  when  you   are   satisfied   with   the

List  Window  width.

Practice  Editing  with  Picture

This   is   a   good   opportunity   to  practice   editing  a   BASIC   program   on   the
Amiga  and  to  learn  about  some  of  the  graphics  statements  in  Amiga  Basic.
Don't  worry  about  losing  or  altering  Picture.    There  is  another  program just
like  it  called  picture2.bas  on  this  disk.

If   you'd   like   to   experiment,   go   ahead   and   make   your   own   changes   to
Picture.     Try  the   following   sequence   to   change   the   program   to   produce
output  that  looks  like  this:

2-10           Getting  started

`-

``-

-I



Adding  a  Line  to  the  Program

Start  by  adding  the  line  that  draws  the  second  sphere:

•      Look  in  the  List  window  for  Picture  listing  until  you  find  this

line :

CIRCLE (60 , 60)  , 55 , 0 ,  ,  , ASPECT

Find  llne  of  code  that
draws the flrst  sphere

Getting  started           2-11



•       Click  at  the  end  of  the  line  to  move  the  insertion  point  there.

•      Press  the  RETURN  key  to  open  a  new  line.

Now  you   are  ready  to  type   a   new  line.      Note   that   BASIC   automatically
aligns  the  cursor  with  the  statement  directly  above  it  saving  you  the  bother

of  inserting  blank  spaces.

•       Type  the  following  line:

CIRCLE (200 , 60)  , 55 ,  3 ,  ,  , ASPECT

Enter  this  llne  of  code  to
draw the  second  sphere

This  statement  draws  an  ellipse  with  the  center  located  at  200,60.    It  has  a
radius  of  55  and  an  aspect  ratio  equal  to  ASPECT.     In  Amiga  Basic,   the
number  0  represents  blue,  and  the  number  3  represents  orange.  Every  time
the  WHILE  loop  is  executed,   the  statement  draws   another  ellipse  with   a
different  aspect  ratio   (ASPECT).     These  ellipses  form  the  sphere.

•      Choose  start  to  run  the  program.

2-12           Getting  started

`-

`-



Correcting  Errors

You may  introduce  an  error when  you  type  or  edit  a program.  When  it finds
an    error,    BASIC    stops    program    execution    and    displays    a    requester
describing the  error.    BASIC  makes  sure  the  List  window  is  visible  and  then
scrolls  the  window  so  the  line  containing  the  error  is  visible  in  the  window.

The   statement   that   caused   the   error   is   enclosed   in   an   orange   rectangle.
Then  you  can  edit the  incorrect line in the  List window and run the  program
again.

`-

-,/

EE

Replacing  a  Program  Line

Since  you  changed  the  program,  only  the  first  sphere  moves  when  you  click
the   Selection  button.     Let's  change  the  program  so  that  the  both  spheres
move  together.

•       If  the  program  is  still  running,   choose   Stop  to  stop  it.

Choose   Show   List   Window.       Observe   that   Show   List   Window   doesn't
change  the  position  of  the  List  window.

•      Point  at  the  extreme  left  edge  of  the  GET  statement  and  drag
the   highlighting  across  to  the   end  of  the   line.     Note  that  this
selects  the  entire  line,   highlighting  it  in  orange.

Getting  started           2-13



elect the  GET  Statement

•      Choose  Cut  from  the  Edit  menu  to  delete  the  selection.

•      Onthe  blankline  type

GET (O , 0) -( 327 ,127 )  , P

This  new  GET statement  increases  the  area  that  moves  when  you  click the
Selection  button.

Now,  let's  change the  DIM  statement to  create  an  array  of  6000  rather than
2500  elements.

•      Move  the  insertion  point  to  the  DIM  statement.

•      Select  the  part  of the  statement  that  reads  2500  and  select  Cut
from  the  Edit  menu.

•      Type  6000  within  the  parentheses  so  that  the  line  now  reads

DIM  P(6000)

2-14          Getting  started

`\-,-

`-

`-



Ammended Statements

•      Choose  start  to  run  the  program.

Now  both  spheres  move  together  when  you  click  and  drag  the  mouse.

Reversing  Blue  and White

Let's   change   the   first   sphere   so   that   it   appears   in   white    on   a   blue
background  like  this:

Getting  started          2-15

`-

EE



•      If  the  program  is  still  running,   choose  Stop  to  stop  it.

•      Find  the  Line  statement  in  the  program.

•      Point   to   the   end   of   the   statement   and   click,    putting   the
insertion  point  directly  after  BF.

2-16          Getting  started

`-

``-

-,



`-

`-

•      Press  the  BACKSPACE  key  once  to  delete  the  F  in  BF.

Now  the  inside  of  the  box  will  be  blue,  not  white.

•      Findtheline

CIRCLE (60 , 60)  , 55 , 0

•      Position  the  insertion  point  after  the  number  0.

•      Press  the  BACKSPACE  key  once  to  delete  the  0.

•      Type   1  to  make  the  color  number  1.

Now  the  ellipse  will  be  drawn  in  white  instead  of  blue.

•      Choose  Start  to  see  the  new  program  output.

The  changes  in  the  program  are  now  complete.

Getting  started          2-17



Single-Stepping Through The  Program

To   get   better   acquainted   with   Picture,    1et's   use   a   common   debugging
technique:  single-stepping  through  the  program.

•      If  Picture  is  still  running,   choose  Stop  to  stop  it.

•      Selectthe  output  window  by  clicking  anywhere  in  it.    Observe
the  Ok  prompt.

•     Typein

end

and  press  the  RETURN  key.

•      Choose  Step from the  Run menu.   Step  executes  the  first  line  of

the  program  and  then  stops.

•      Choose  Show  List  window  from  the  Windows  menu  to  open
and  select  the  List  window  on  the  right  side  of  the  screen.

Each statement is  outlined in the  List window  as  it is  executed.   The  Output
window  is  selected  so  that  any  text  you  type  appears  there.

•      Choose  Step  again   (or  press  right  Amiga-T).

The  next  line  executes,   and  the  program  stops  again.     There's  no  output

yet,  so  not  much  is  happening.

Continue   choosing   Step   and   watch   the   program   execute   one   program
statement  at  a  time.    When  the  section  that  draws  the  ellipses  is  outlined,
observe  how  it  draws  the  spheres.    Each  iteration  of  the  WHILE  loop  adds
an  ellipse  with  a  different  ASPECT  (aspect  ratio)  to  each  sphere.

2-18          Getting  started

`-

-/

`-



I-

-

-

•      Just  for  fun,  after  the  first  few  ellipses  have  been  drawn,  type

print,  aspect,

in  the  Output  window,  and

•     press  the  RETURN  key.

Getting  started          2-19



The  current  value  of  ASPECT  (the  aspect  ratio  for  the  ellipse)  appears  in
the  Output  window.

Even  though  we're  not  actually  debugging  Picture,  this  illustrates  a  typical
"debugging"  technique.    You  can  enter  a  command  in  the  Output  window

from   BASIC   "on   the   spot."       This   is   called   entering   a   command   in
"immediate    mode."         BASIC    executes    immediate    mode    commands

immediately and displays the result if there  is  one.    See  "Operating Modes"
in  Chapter  3,     "Using  Amiga  Basic,"  for  more  information  on  immediate
mode.

•      Continue  stepping  through  Picture.     Check  other  variables   if

you  like.

•      If     you'd   rather   stop   stepping   and  just   run   the   rest   of  the

program,  choose  Continue  from  the  Run  menu.

Saving The  Program

Whenever   you   enter   a   new   program   or   make   changes   to   an   existing

program,  use the  Save As menu  item to put the program  on the  disk.    Once
it's  on  the  disk,  you  can  load  and  run  it  any  time  you  like.

•      Choose the save As item fromthe project menu.   The following
requestor  appears:

2-20          Getting  started

`-

-I

-



EE

`-

E]E

BASIC  assumes  you  want  to  save  the  program  under  its  currrent  name,

picture.bas.    It also  assumes  that you  want to  save the program in whatever
form  it  was  loaded  in.

You can change the name if you want to,  but the  simplest thing is to  simply
click  the  OK  Gadget.

Now   you   have   two   versions    of   picture.bas   on   the   disk:    the   original,
unchanged  picture2.bas  and  the  newly  edited  picture.bas.    You  could  have
also  decided to  rename the program  as  ``myprogram.bas"  or  any  other legal
name.   That would  have  preserved picture.bas  in the  form that you  found  it
before  your  changes.

Leaving BASIC and Returning  to the Workbench

•      Choose  Quit  from  the  Project  menu.

Congratulations!    You  have  just  finished  the  practice  session.

Getting  started          2-21



You are now back at the Workbench ready to begin your next activity on the
Amiga.    But  you've  learned  a  lot  about  Amiga  Basic  in  just  a  few  minutes.

You've  learned  how  to

•      Load  an  existing  program.

•      Edit  programs  in  the  List  window.

•      Work  with  some  BASIC  statements  and  functions.

•      Save  a  BASIC  program  file.

In  the  next  chapter,  you'11  find  the  elementary  facts  about  how  to  operate
BASIC,   including   a   section   called   ``The   Amiga   Basic   Screen."      You'll
recognize  things  you  discovered  in  the  practice  session,  and  you'll  observe
new   things   as   well.      As   with   all   Amiga   tools,   you   can't   "harm"   the
computer  or  BASIC  through  normal  typing,   mouse  pointing,   or  trial  and
error.    So  don't hesitate to  experiment  with  Amiga  Basic  and  try  out  all  the
features  of  the  screen.

To  load  an  existing  program:

To  load  an  existing  program,    enter  the  command:

LOAD   <f ilename>

To  edit  the  loaded  program:

To  edit  the  loaded  program  or  enter  a  new  program,  enter  the  command:

LIST   [<line  number>]

2-22         Getting  started

`-

`-

I-/



EE

`-

RE

LIST calls  BASIC's  full  screen  editor.    If  you  specify  a  line  number,    that
line appears on the top line of the display along with the  24 lines that follow
it.

To  execute  a  program  in  memory:

To  start  a  program  in  memory  ruuning,  enter  the  command:

RUN

To  stop  the  program  while  it  is  running,  press  CTRL-C.

To   debug  the   program,   you   can   use   immediate   mode   statements.   For
example,

FOR   1=1   to   20   PRINT   A(I)  :    NEXT   I

To  resume  execution  of  the  program,  enter  the  following  command:

CONT

To  leave  BASIC:

To  quit  the  BASIC  and  return  to  the  Workbench,  enter  the  command:

SYSTEM

To  save  a  program  currently  in  memory:

If  the  program  currently  in  memory  has  been  altered  and  not  saved,  the
following  message  appears  to  prompt  you:

Program   not,    saved,     t,ype    SYSTEM   again    if    you    don`t
want,   to   save   it,.

Getting  started          2-23



-

-

I-/



Using Amiga Basic

`- Chapter 3

This      chapter      contains      the      fundamental      operating
information  for  using  Amiga  Basic,  including  how  to  start
and  quit  BASIC,  how  to  load    and  save  files,  and  how  to
use   the   different   operating   modes.      It   then   goes   on   to
describe  the  various  elements  of  the  Amiga  Basic  screen.

Using  Amiga  Basic          3-1



Operating  Fundamentals

The  following  section  explains  how  to  start  and  exit  Amiga  Basic  and  how
to  load  and  save  Amiga  Basic  programs.

Starting Amiga  Basic

Here  are  the  two  ways  to  start  Amiga  Basic:

•      Open  the  Amiga  Basic  icon  on  Workbench.

•     Type

basic

on  the   CLI  screen   (selected  from  Preferences)   and  press  the
RETURN  key.You  can  also  double-click  on  any  Amiga  Basic

program  icon  in  the  Workbench.     Not  only  does  this   invoke
BASIC,   it  also  loads  and  runs  the  selected  program.

Exiting  Amiga  Basic  and  Returning  to  the Workbench

There  are  two  ways  to  exit  Amiga  Basic  and  return  to  the  Workbench.

•      Select  the  Quit  item  from  the  Menu  Bar's  Project  menu.

•     Type

syst,em

in  the  selected  Output  window  and  press  the  RETURN  key  or
enter  SYSTEM  as  an  instruction  in  a  BASIC  program.

3-2          Using  Amiga  Basic

`-`'

`-



`-

`-.

`-

Loading  a  Program

To run a program,  the program must be in memory.   There  are several ways
to  put  an  existing  program  into  memory.

•     When  in  the  Workbench,  double-click the  icon  for  an  Amiga
Basic  program.     This  loads   BASIC  and   loads   and   runs   the
selected  program.

•      If  BASIC  has  already  been  loaded,   you  can  select  the   Open
item  from  the  project  menu.       This  displays  a  requester  asking

you which program you wish  to  load.  Type  in the  name  of   the
program  and  click  in  the  OK  Gadget   (or  press  the  RETURN
key) .

•      If  BASIC  has  already  been  loaded,   you  can  type  the  LOAD
statementinthe       Outputwindow.   See  "LOAD"  in  chapter   8
for  the  proper  syntax  for  this  statement.

•      If a  BASIC program is  currently running,  it can use the  CHAIN
statement  to  load  and  run  another  program.

Saving  a  Program

To  save  a  new  program,  you  can  either  select  the  Save  As  item  from  the
Project  Menu  or  type  the   SAVE  statement  in  the   Output  window.      See
"SAVE"  in  Chapter  8  for the proper  syntax  of this  statement.   To  file  away

a  previously  saved  and  now  re-edited  program,   you  can  either  enter  the
SAVE   command   or   select   the   Save   item   from   the   Project   menu   (see
below) .

Amiga   Basic   saves   all   new   programs   in   compressed   form   unless   you
explicitly  instruct  it  to  do  otherwise  with  the  SAVE  statement.     To  save

programs  for  a  word  processor  or  in  protected  form,   you  must  also  give
explicit  instructions  with  the  SAVE  command  in  the  Output  Window.

Using  Amiga  Basic          3-3



Operating Modes

When  you  open  Amiga  Basic,  the  Output  window  appears  with  the  name
BASIC.   It is ready to  accept commands.   At this point,  you  can use  Amiga
Basic  in  one  of  three  modes:   immediate  mode,   edit  mode,   or  program
execution   mode.       The   List   window   is    selected   when    BASIC   begins
operating.

Immediate  Mode

In  immediate  mode,   BASIC  commands   are  not  stored  in  memory,   but
instead  are  executed  as  they  are  entered  in  the  Output  window.    Results  of
arithmetic  and  logical  operations  are  displayed  immediately  and  stored  for
later    use,    but    the    instructions    themselves    are    lost    after    execution.
Immediate   mode   is   useful   for   debugging   and   for   using   BASIC   as   a
calculator for quick computations that do not require  a  complete program.

To  begin  entering  immediate  commands,  you  must  first  select  the  Output
window  by  clicking  anywhere  in  it  with  the  Selection  button.

Program Execution Mode

When  a program is running,  BASIC is in program  execution mode.    During
program execution,  you cannot execute commands in immediate mode,  nor
can  you  enter  new  lines  in  the  List  window.

Edit  Mode

You  are  in  edit  mode  when  you  are  working  in  the  List  window.

3-4          Using  Amiga  Basic

`-

EE

`-



The Amiga Basic Screen-/

`-

EIEI

There  are three  separate  regions  of the  BASIC  screen:  the  Output  window,
the  List  window,  and  the  Menu  Bar.

The  Output  and  List  windows  have  these  traits  in  common:

•      To  select  a  window,  you  click  anywhere  inside  it.

•      To  resize  the  window,  you  drag  the  Sizing  Gadget  in  the  lower

right  corner.

•      To  bring  the  back  window  to  the  front,   you  click  the  Front
Gadget.

•      To   put   the   front   window   to   the   back,   you   click   the   Back
Gadget.

•      To  close  the  window,  you  click the  Close  Gadget  located  in  the

upper  left  corner.

•      To  move  the  window,  you  press  and  hold  down  the  Selection
button  and  drag the  Title  Bar.    (You  can  also  move  the  Output
window  if  you  resize  it.)

The  menu  bar  has  several  distinguishing  qualities:

•      To  display the  Menu  Bar,  you  select the  List  or  Output window
and  press  and  hold  down  the  Menu  button.

•      To display the individual menus,  you point at the  desired  menu
title .

•      To  choose  an individual menu item,  you point  at  it to  highlight
it,  and  release  the  Menu  Button.

Using  Amiga  Basic          3-5



The  following  sections  describe  additional  features  of  each  of  these  screen
areas .

The  Output Window

You  can  use  the   Output  window  both  to   enter  statements   as  immediate
mode  commands  and  to  display  the  output  from  your  programs.

To  select  the  Output  window:

•      Clickinside  it,  or

•      Choose  Show  Output  Window  from  the  Windows  menu,  and
click  inside  it,

In  the  Output  window,  you  can:

•      Enter  a  statement  as  a  immediate  mode   command.     BASIC
executes the  command when you press the  RETURN key.   Any
output from the  command appears in the same  Output window.

•      Use the  BACKSPACE key to  delete typing mistakes  before  you
correct  them.

The  List Window

You can use the List window to  enter,  view,  edit,  and trace the  execution of

programs.    The  List  window  is  automatically  selected  when  you  first  open
Amiga  Basic.

3-6          Using  Amiga  Basic

EE

\-

`-



To  select  the  List  window:

•      Clickinside  it,  or

•      Choose  Show  List Window from the  Windows  menu,  and  click
inside  it'

The  List  window  is  made  visible  when  the  program  halts  due  to  an  error.

Note:     If  a  program  has  been  saved  in  a  protected  file   (with  the   SAVE
command  in  the  Output  window),  you  cannot  open  a  List  window  for  the
file.     Protected  files  can  neither  be  listed  nor  edited.

`-

-,

-`

In  the  List  window,  you  can:

•      Look at aprogram and scroll through it with the arrow keys  and
the  SHIFT  and  ALT  keys  combined  with  the  arrow  keys.

•      Enter     or  edit  a  program  using  all  of  the  features   of  Amiga
Basic,   including  selecting  text  with  the   mouse   and  using  the
options in the Edit menu.   See  "List Window Hints"  in  Chapter
4,  "Editing and Debugging Your Programs,"  for more  details  on
List  windows.

The Menu Bar and Menu Keyboard Shortcuts

There   are  four menus on the  Menu Bar:  Project,  Edit,  Run,  and Windows.
You  cannot  always  use  all  of these  menus.    A  menu  title  may be  displayed
less   distinctively  as   a  ghosf  menu  item  to  indicate  that  the  menu   is   not
relevant  to  what  you  are  doing  at  the  moment.     Similarly,   a  ghost  menu
item  may  appear  when  a  ghost  menu  or  menu  item  cannot  be  selected.

Using  Amiga  Basic          3-7



Some  of the  menu  items  show  an  Amiga  key  sequence  next  to  them,  such
as  Amiga-X for  Cut.   This  means you  can press  the  given  key  combination

(press  the   "X"   key  while  holding  down  the  right  Amiga  key)   instead  of
choosing the  item  with  the  mouse,  if you  want to.    All  the  menu  keyboard
shortcuts  use  the  right  Amiga  key.

The  Project Menu

The  Project  menu  contains  five  items  that  affect  program  files.    There  are
no  keyboard  shortcuts  for  the  items  in  the  Project  Menu.

New    gets  BASIC  ready  to  accept  a  new  program.     It  clears  the  current

program  listing from  your  screen  and  clears  the  program  from  memory,  so
you   can   begin   a   new   program.      It  behaves  the   same   way   as   the   New
statement.

Open tells BASIC that you want to bring in a program that is already on the
disk.  To  display  the  names  of the  programs  on  the  disk,  select  the  Output
window   and   enter  the   FILES   command.      When   you   choose   Open,   a
requester  appears  to  ask  which  program  you  wish  to  open.     Type  in  the
name  of  the  desired  program,  then  click  the  OK  Gadget.

Save  saves  the  program  under  its  current  name.     This  means  it  puts   a

program  on  the  disk  after  you  have  entered  it  or  made  changes  to  it.  Save
saves all new programs in compressed format and saves all revised programs
in  whatever  format  they  were  loaded  in.

Save  As...  is  the  same  as  Save,  except  that  Save  As  allows  you  to  change
the name of the program to be saved.  Amiga Basic saves your new programs
in  compressed  format,   and  it  saves  your  loaded  and  revised  programs  in
whatever  form  they  were  loaded  in.

3-8          Using  Amiga  Basic`

`-

`-

-



-

flE

`-.J

To  save  your  program  in  text  or  protected  format,  you  must  use  the  Save
statement  as  a  immediate     mode  command  in  the   Output  window.   See
"Program    File    Commands"    in    Chapter    5,    "Working   with    Files    and

Devices,"   for  an     explanation  of  file  formats.     See   SAVE  in  Chapter   8,
"BASIC  Reference,"  for the  syntax and  grammar  of the  SAVE  statement.

Quit  tells Amiga Basic to return to the Workbench.   It behaves exactly like
the  SYSTEM  statement.

The  Edit Menu

The  Edit  menu  has  three  items  that  are  used  when  entering  and  editing

programs.    Except  for  immediate  mode  commands  in  the  Output  window,
you  enter  and  edit  all program  statements  in the  List  window,    Each  of the
Edit  menu  commands  has  a  keyboard  shortcut.

Cut   deletes  the  current  selection  from  the  List  window  and  puts  it  in  the
Clipboard.    Pressing  Amiga-X  is  the  same  as  choosing  Cut.

Copy   puts   a   copy   of   the   current   selection   into   the   Clipboard   without
deleting  it.    Pressing  Amiga-C  is  the  same  as  choosing  Copy.

Paste  replaces  the  current  selection  with  the  contents  of the  Clipboard.    If
no characters are selected,  Paste inserts the contents of the  Clipboard to the
right  of  the  insertion  point.     Pressing  Amiga-P  is  the  same   as   choosing
Paste .

The Run Menu

The   Run   menu   has   six   commands   that   control   program   execution.
Keyboard  shortcuts  are  available  for  four  of  these  commands.

Using  Amiga  Basic          3-9



Start  runs  the  current  program.    Entering  RUN  in  the  Output  window  or
pressing   Amiga-R   are   the   same   as   choosing   Start.       Start   is   enabled
whenever  BASIC is  in immediate  mode.  Pressing Amiga-R is the keyboard
shortcut  for  running  the  current  program.

Stop     stops  the  program  that  is  running.     Stop  behaves  exactly  like  the
STOP   statement.   Amiga-.   or   CTRL-C   are   the   keyboard   shortcuts   for
stopping the  current  program.

Continue  starts  a  stopped  or  suspended  program.    Entering  CONT  in  the
Output window is the .same  as  choosing Continue.  The  Continue  menu  item
is enabled only when a program has actually been stopped and continuing is

possible.   If no program was  stopped,  or if you changed the program while it
was  stopped,  a  requester  appears  that  says  "Can't  continue."

Suspend      suspends  the  program  that  is  running  until  any  key  other  than
Amiga-S   is   pressed.      Pressing   Amiga-S   or   CTRL-S   are   the   same   as
selecting  Suspend.    Suspend  is  enabled  whenever  a  program  is  running.

Trace  On is a toggle that turns program tracing on  and  off for  debugging.   If
the    List   window   is   visible,    tracing   highlights    each   statement   as   it    is
executed.     This  works  the  same  as  the  TRON    statement  where  the  last
statement  executed  has  a  trace  rectangle  drawn  around  it.    If  no  statement
has  been  executed,  no  rectangle  is  drawn.    This  lets  you  determine  where
the  program  is  being  stopped.

Trace Off works the  same  as the TROFF statement where tracing no longer
highlights  each  statement  as  it  occurs

Step executes the program one step at a time.   It stops  after each statement.
Pressing Amiga-T is  the  same  as  choosing  Step.    When  the  List  window  is
made   visible,    a   rectangular   box   outlines   the   statement   that   was   just
executed.

3-10          Using  Amiga  Basic

-

`-/,

EE



The Windows  Menu

The Windows menu has two items that open windows on the BASIC screen.

Show   List  Window  opens   and  selects  the   List   window   on  the   current
program.    If  a  List  window  is  already  opened  but  covered  with  the  Output
window,   Show   List  Window  brings   it  forward.   Pressing  Amiga-L  is  the
same  as  choosing Show List Window.   To  edit a loaded program or to  enter
a  new  program,  you  can  also  use  the  LIST  immediate  mode  command  in
the  Output  window.

Show  Output Window   opens  the  Output  window.  The  List  window  is  put
behind the  Output window.     In  order to  enter immediate mode  commands
in  the  Output  window,  you  must  first  click  in  it.

-

EE

`-
Using  Amiga  Basic          3-11



`-

EE

`-



-

A-

-`

Chapter 4

Editing and Debugging
Your Programs

This  chapter  describes  how  to  enter  text  to  write  programs
and  how  to  remove  errors  from  programs.

Editing  Programs

The  List  window  appears  when  you  start  Amiga  Basic.  Use
the   regular   Amiga   editing   commands,    Cut,    Copy,    and
Paste,   to   enter   and   edit   the   program   lines   in   the   List
window.

Editing  and  Debugging          4-1



When  you  first  open  BASIC,  the  List  window  that  appears  may  seem  too
narrow to use  for long program lines.   Text that you  enter beyond the  right
margin forces the window to  scroll,  keeping the  cursor in the visible part of
the  List  window.  To  get  back  to  the  left  margin,  press  ALT-Left  Arrow.
Drag  the  List  window  to  the  left,  and  then  drag  the  Sizing  Gadget  to  the
right  to  increase  the  width  of the  right  margin.

Editing Reminders

Editing program  lines  in  the  List  window  is  much  like  working with  regular
text  on  a  processor.

Here are some reminders about typing,  selecting,  and editing text in the List
window.

Typing  and Editing Text

•      Insert  text  by  typing  it  or  by  pasting  it   from  the   Clipboard.
Inserted  text  appears  to  the  right  of  the  insertion  point.

•      Delete  text  by  backspacing  over  it  or  by  selecting  it  and  then

choosing  Cut  from  the  Edit  menu.

•      End  each  program  line  with  a  carriage  return.    You  can  have
extra  carriage  returns  in     your  BASIC  programs.      However,
these   only   create   blank   lines   that   are   ignored      when   the

program  executes.

•     You can indent  lines  of text by using the  TAB  key.    The TAB
key advances three characters to the right.   When you press the
RETURN key at the end of a line,  the  cursor  descends  one  line
and  goes  to  the  column  where  the  previous  line  started.    This
means if the previous line started with  a tab,  the  new line  starts
at   the   same      tab   stop.      This      indentation   does   not   cost
additional  memory.

4-2         Editing  and  Debugging

`-

`-

-/



-

-

`-,

•      You  can  type  reserved  words  in  either  uppercase  or  lowercase,

but  BASIC  always  displays  them  in  uppercase.

•      You   can type  variable  names  of up to  40  significant  characters.
A  variable  is  initially  single  precision  unless  you  terminate  it

with   a   special   character   or   execute   a   DEFINT,   DEFLNG,
DEFSNG,    DEFDBL,    or   DEFSTR   statement,       The   special
characters  are  S  for  string,   I   for  single  precision,  #  for  double

precision,  % for integer,  and   & for long.   You  can type  variable
names   in   either   upper   or   lowercase,   but   BASIC   does   not
distinguish  between  them.     For  example,   alpha,   Alpha,   and
ALPHA  all  refer  to  the  same  variable.

•      You  can precede program lines  with numbers,  but line numbers

are  not  required.

Selecting  Text

•      Select characters  or lines  by  dragging the  highlighting over them

with  the  mouse.

•      The  quickest way to  select  a  single  line  is  to  point  at  the  far  left

edge  of  the  line  and  drag  the  highlighting  down  one  line.

•      If  you  drag  the  highlighting  to  the  edge  of  the  List  window  and
keep     holding     down     the     Selection     button,     the     window
automatically  scrolls,   selecting  as  it  goes.

•      Select  individual  words  in  program  lines  by  pointing  at  them

and  double-clicking.

An   alternative   way   to   make   an   extended   selection   is   to   click   at   the
beginning of the selection,  move to the  end of the selection,  and  Shift-click
(click  while  holding  down  the  SHIFT  key).    This  action  selects  all  the  text
between  the  beginning  and  the  end  of  the  selection.

Editing  and  Debugging          4-3



Scrolling

•     When  you  reach  the  bottom  of  a  List  window  and  continue
entering  lines,   BASIC  automatically  scrolls  up  one  line  at   a
time.

•      BASIC  automatically  scrolls  horizontally  when  you  reach  the
right  edge  of  a  List  window  and  continue  typing.

•      Use   the   four   arrow   keys   to   move   the   insertion   point   one
character  to  the  right  or  left  or      one  line  up  or  down.

•      If  you   press   the   right   arrow   key   and   the   insertion   point   is
already  at  the  rightmost  column       of  the  display,  the  display
scrolls   down   75%   to   the   right.      If  the   display   has   already
scrolled   as far to the  right  as possible,  BASIC beeps to  indicate
it can  go  no  further.   The  left,  up,  and   down  arrows behave  in
the  same  way.

•      If  you  hold  the  SHIFT  key  down  while  you  hold  down  any
arrow   key,   the   display     scrolls   in   that   direction.      If   it   has
already   scrolled   as   far   as   possible   in   that   direction,   BASIC
beeps.

•      To  move  forward  through  a  program  listing  a  windowful  at  a
time,  press  SHIFT-Down Arrow.   To  move backwards  through
a  program  listing  a   windowful   at  a  time,   press   SHIFT-   Up
Arrow.

•      To  move  to  the  beginning  of  a  program  listing,  press  ALT-Up
Arrow.    To   move   to   the    end    of   a   program   listing,    press
ALT-Down  Arrow.

•      To  move  to  the  far  right  margin  of  a  given  program  line,  press

ALT-Right  Arrow.    To  move  to  the  far  left  margin  of  a  given

program  line,  press  ALT-Left  Arrow.

•      To  move  75%  of  the  way  towards  the  right  margin  of  a  given

program  line,  press  SHIFT-Right  Arrow.   To  move  75%  of the
way  towards  the   left   margin   of   a   given   program   line,   press
SHIFT-Left  Arrow.

4-4          Editing  and  Debugging

`-

`-

`-



`-

-`

Opening  the  List Window  at  a  Specific  Line  or a  Specified  Label

To    open  the  List  window  at  a  specified  line,  enter  the  LIST  command  in
the  Output window and include a label or   a line number.   The  List  window
opens  with  that  line  as  the  first  line.

For  example,  LIST Movepicture  opens  the  List  window  on  the  picture.bas
program  beginning  with  the  Movepicture  subroutine.

Debugging  Programs

This   section   describes   the   four   debugging   features   that   Amiga    Basic

provides:   error  messages,  the  TRON  command,  the  Step  option  and  the
Suspend  option.     You  can use  these  features  to  save  time  and  effort while
removing  program  errors.

Error Messages

When  a program  encounters  an  error,  program  execution halts,  a  requester
appears with the error message,  and the line with the error is  outlined in the
List  window.    See  Appendix  8,   "Error  Codes  and  Error  Messages,"  for  a
complete  listing  of  these  codes  and  messages  with  some  probable  causes
and  suggestions  for  recovery.

TRON Command

It  is  easy  to  remember  the  TRON  command  as  TRace  ON.     You  are  in
Trace  mode  whenever  you  choose  the  Trace  On  item  from  the  Run  menu,
execute  the  TRON  statement  in   a  program  line,   or  enter  TRON  in  the
Output  window.

If the List window is visible,  the  statement being executed is framed with an
orange  rectangle.    As  the  program  executes,  statement  by  statement,  each
statement  is  framed.

Editing  and  Debugging          4-5



To  disable  TRON,  select  the  Trace  Off  item  from  the  Run  menu,  execute
TROFF  in  a  program  line,  or  enter  TROFF  in  the  Output  window.

If you  have  isolated the  error to  a  small part  of the program,  it is  easier  and

quicker  to  turn  on TRON  from  within  the  program,  just before  the  error  is
reached.

Step  Option

The  Step  option  executes the  next  statement  of the program in memory.    If
the   program   has   been   executed   and   stopped,    Step   executes   the   first
statement  following  the   STOP  statement.     The  program     then  returns  to
immediate  mode.     If  there  is  more  than   one  statement  on   a  line,   Step
executes  each  statement  individually.    You  can  choose  the  Step  item  in  the
Run  menu  or  press  Right  Amiga-T.

If  the  List  window  is  visible,   Step  frames  the  last  statement  that  has  been
executed.

You can  advance through  a program,  step by  step,  testing results  at the  end
of  each  line,  and  interactively  testing  variable  values  by    using  the  PRINT
command  in  the  Output  window.

To   reset   Step   to   start   at   the   beginning   of   a   program,   enter   the   END
statement  in  the  Output  window.

If     ON   BREAK   trapping   is   enabled,   you   cannot   use   Step   to   stop   the
execution of a program.   For more information,  see  "ON Break"  in  Chapter
8,   "BASIC  Reference."

Suspend  Option

To  create  a pause  in program  execution,  you  can  choose  Suspend  from the
Run menu or press  Right  Amiga-S.   The pause  created  lasts until you press
any  key  (except  Right  Amiga-S)  or  select  Continue  from  the  Run  menu.
Suspend  is  enabled  whenever  a  program  is  running.

4-6          Editing  and  Debugging

`-

`-

-'



`-

`-

Continue  Option

To   resume   execution   of   a   program,    you   can   enter   the    CONTINUE
command  in the  Output  window  or  choose  Continue  from  the  Run  menu.

Using  CUT,  COPY,  and  PASTE  Commands  in  List Windows

Don't  forget  that  the  contents  of  the  Clipboard  are  replaced  with  each  Cut
and   Copy   command.   However,   a   Paste   command   does   not   change   the
contents of the  Clipboard,  so you can paste the same  contents into  different

places  in  a  program  as  many  times  as  you  want.

Sometimes  you  may    want  to  cut  something  out  of  the  program  without
having it overwrite  information you  have  on the  Clipboard.   You  can  do this
by  highlighting  the  text  you  want  to  eliminate  and  pressing  the  Backspace
key.This  is  also  a  good technique  when  you  want to  avoid  generating  "  Out
of  heap  space"  error  messages  which  can  occur  when  deleting  a  very  large
block  of  text.

Using  the Output Window for Debugging

Once  a  program  has  been  suspended,  you  can  use  the  Output  window  to

glean  useful  debugging  information  in  immediate  mode.     For  example,   if
your  program  is  causing  an  error  message,  and  the  error  occurs  somewhere
within  a  loop,  you  can  find  out  how  many times  the  program  has  executed
the   loop   and   all   the   variable   values.       You   find   this   out   by   entering
immediate  mode  instructions  in the  Output  window to  PRINT the  variables
(for  exact  syntax,  see  "PRINT"  in  Chapter  8,   `BASIC  Reference').

Another   use  of the  Output  window  in  debugging  is  to  change  the  values  of
variables  with  immediate  mode  LET  statements.     You  can  assign  a  new
value  to  a  variable  and  use  the  Continue  selection  on  the  Run  menu    to
resume  program  execution.

Editing  and  Debugging         4-7



`-

`-

-



Working with Files
and Devices

-

-`

-

Chapter 5

This    chapter    discusses       the   way    to    input    and    output
information  through  the  system  and  the  way    Amiga  Basic
uses  files  and  drives.    In  addition,  it  describes  file  handling
and  gives   some   suggestions  for  transferring  data  between
Amiga  Basic  and  a  word  processor.

Working  with  Files  and  Devices          5-1



Generalized Device I/0

Amiga   Basic   supports   generalized   input   and   output.      This   means   that
various devices can be used with the same syntax BASIC uses to  access  disk
files.    The  following  devices  are  supported:

SCRN:                   Files  can  be  opened  to  the  screen  device  for  output.    All
data  opened  to  SCRN:   is  directed  to  the   current  Output
window.

KYBD:

LPT1:

COM1:

Files  can  be  opened to  the  keyboard  device  for  input.    All
data  read  from  a  file  opened  to  KYBD:   comes  from  the
Amiga  keyboard.

Files   can  be   opened  to  this   device   for  output.     All  data
written  to   a  file   opened  to   LPT1:   is   directed  to  the  line

printer.       If   "LPT1:BIN"    is   specified,    BASIC   performs
BINARY  output  to  the  line  printer.  Then  BASIC  does  not
expand  tabs  into  spaces  or  force  carriage  returns  when  the
printer's  width  is  exceeded.

Files  can be  opened to this  device for input or output.   Files
opened  with  COM1:   communicate  with  the  Amiga  serial

port.   BASIC recognizes the  following parameters  as part  of
the  "COM1:"   filename:

COM1:    [baud-rate]     [,[parit,y   ]    [,[data-bit.s]     [.stop-bits]]]]

bcictd  rcife     the  speed  at  which  the  Amiga  communicates.
The  baud  rate  is  one  of  the  following  values:
110,150,   300,   600,1200,1800,   2400,   3600,
4800,   7200,   9600,   or   19200.

parity a  technique  for  detecting  transmission  errors.
The  default is  E.  It is  either  0  (for  odd),  E  (for
even),  or  N  (for  none).

5-2          Working  with  Files  and  Devices

-

iM

I-.'



EE

-I

dafc}-b!./s     the  bits  in  each  byte  transmitted  that  are  real
data  and  not  overhead   ®arity  bits   and  stop
bits).      It  is  either  5,  6,  7,  or  8.

sfop-b!.fs      used   to   mark   the   end   of   the   transmitted
"byte."  When the baud rate is  110,  the  default

for stop-bits  is  2.    At  all  other baud  rates,  the
default  is  1.    When  2  stop  bits  and  5  data  bits
are   specified,    1.5    stop   bits    are   used.    For
example'

OPEN    "COH1:300,N,7,2"    AS    #1

Printer Option

Amiga  Basic provides  one way   to use the printer.    You  address  the  printer
device,   LPT1:.

File Naming  Conventions

There  are  few  filename  constraints  in  Amiga  Basic  on  the  Amiga.  All  files
have  a  filename  preceded  by  an  optional  volume  name.

Filenames

Amiga  Basic  pathnames  can  be  from  one  to  255  characters  in  length,  and
can  consist  of  either  uppercase  or  lowercase  alphanumeric  characters  or  a
combination  of  both.     Each   file   or  subdirectory  name  within   a  path   is
limited   to   30   characters.       No   Command   characters   can   be   used   in
filenames.  Here  are  some  examples  of  valid  filenames:

PAYROLL       A2400            MyFile          CHECK  REGISTER

Working  with  Files  and  Devices          5-3



Volume  Specifications

Your  Amiga  comes  with   one  built-in   disk  drive.     You  may  connect  an
additional  disk  drive  to  increase  your  storage  capacity.    Even  on  one-drive
systems,  some  people  will  have  more  than  one  volume.    In  this  case,  you
must explain which volume is to be  activated for loading or saving files,  You

do  this  by  adding  the  relevant  file  name  to  the  volume  name,  separating
them  by  a  colon.

For  loading program  files,  it  is  best  to  select  the  Open  item  on  the  Project
menu.    If  the  program  file  you  wish  to  load  is  on  another  disk,  press  the
eject  button  next  to  the  built-in  disk  drive,   and  insert  the  disk  with  the
desired  file.    After the  disk  is  inserted,  use  the  FILES  command  to  display
the files  on the  disk,  and you  can proceed with selecting and loading the  file
in  the  normal  way  you  would  if  the  file  was  on  the  same  disk.     To  save

program  files  on  another  disk,  it  is  best  to  select  the  Save  As  command  on
the  Project  menu.    The  process  that  follows  is  similar to  the  procedures  for
loading.

You   can   also   load   a   program   from   another   volume   with   the   LOAD,
MERGE,  or  RUN  commands  by  entering  the  volume  name  and  filename,
separated  by  a  colon,  in  the  Output  window.    However,  if  that  volume  has
not  been  previously  mounted  on  the  system,   an   `Unknown  volume'   error
message  is  generated.    To  avoid  this,  you  will  have  to  first  eject  the  disk  in

your  built-in  drive  by  pressing  the  eject  button.    Then  you  can  insert  the
volume  containing  the  program  you  wish  to  load.

Handling Files

This  section  examines  file   I/0   procedures   for   the  beginning  BASIC user.
If  you   are   new  to   Amiga   Basic,   or   if  you   are   encountering   file-related
errors,  read  through  these  procedures  and  program  examples  to  make  sure

you  are  using  the  file    statements    correctly.

5-4          Working  with  Files  and  Devices

`-

`-

`-



Program  File  Commands

The  following is  a brief overview  of the  commands  and  statements  you  use
to  manipulate program  files.   More  detailed  information  and  syntactic  rules
are  given  in  Chapter  8,   "BASIC  Reference,"  under  the  various  statement
names.

Em

-

-

Opening  a  Program  File

There are three main ways to open up  a program file.   The most common is
to use  the  LOAD  command.    When  you  load  a  program  file,  all  open  data
files   are   closed,   the   contents   of   memory   are   cleared,   and   the   loaded

program  is  put  into  memory.

Another   way to  get  a program  file  is  to  bring  a  program  into  memory  and
attach  it  to  the  end  of  a  program  already  in  memory.  Do  this  by  using  the
MERGE command.   This is useful when you are developing a large program
and  want  to  test  the  parts  of  it  separately.    After  testing  and  debugging  the

parts,  you  can  merge  them  together.

A  third  way  to  get  at  a  program  file  is  to  transfer  control  to  it  during  the
execution  of  another  program.     Do  this  by  using  the   CHAIN  statement.
When  you use  CHAIN,  the  program  in  memory  opens  up  another program
and  brings  it  into  memory.     The  first  program  is  no  longer  in  memory.
Options  to  the  CHAIN  statement  permit  all  or  some  variable  values  to  be
preserved,and merging of the program already  in  memory with the program
to  which  control  is  being  transferred,

Putting Away  Program  Files

The two main ways to file  away your programs  are to  select the  Save  or  Save
As  selections  on  the  Project  menu,  or  to  type  the  SAVE  command  in  the
BASIC   window.    For  information  on  the  Save  and  Save  As  selections,  see
"The  Menu  Bar"  in  Chapter  3,   ``Using  Amiga  Basic."    For  full  details  on

the  SAVE  command,  see  `SAVE.  in  Chapter  8,  "BASIC  Reference."  The
default  format  for  saved  files  is  binary.

Working  with  Files  and  Devices          5-5



If you  wish  to  have  a  program  protected  from being listed  or  changed,  use
the  "Protected"   (,P)   option  with  the  SAVE  command.     You  will  almost
certainly    want  to  save  an  unprotected  copy  of  a  program  for  listing  and
editing  purposes.

If  you  wish  to  save  the  program  in  ASCII  format,  use  the   `ASCII'   (,A)
option,      ASCII   files   use   up   more   room   than   binary   ones,   but   word

processing   programs   can   read   ASCII   files,   and   CHAIN   MERGE   and
MERGE  can  successfully  work  only  with  programs  in  this  format.

Additional  File  Commands

Amiga Basic provides  you with  additional program file-handling statements
as  well.     The  NAME  statement  provides  you  with  the  ability  to  rename
existing program  and  data files.   The  KILL statement  enables  you to  delete
a data or program file  from  a  volume.  For  detailed information  about these
two    commands,    see    "KILL"    and    "NAME"    in    Chapter    8,    "BASIC
Reference . "

Data Files - Sequential and Random Access I/0

There  are  two  types  of  data  files  that  can  be  created  and  accessed  by  a
BASIC  program:    sequential  files  and  random  access  files.

Sequential  Files

Sequential  files  are  easier to  create than random  access  files,  but  are  not  as
flexible  and quick in locating data.   The  data  written to  a  sequential file  is  a
series  of ASCII  characters  stored,  one  item  after  another  (sequentially),  in
the   order   written.      The   data   is   read   back   sequentially,   one   item   after
another.

5-6          Working  with  Files  and  Devices

ERE

EEl

Elo



`-

-

Warning:  Sequential files  can be  opened in order to  write to them   or  read
from  them,  but  not  both  at  the  same  time.    When  you  need  to  add  to  a
sequential  file  that has  already  been  given  data  and  closed,  do  not  open  it
for  output.   This  erases the previous  contents  of the  file before it writes the
new data you give it.   Use append mode to add information to the  end of an
existing  file  if  you  don't  want  to  erase  existing  data.

This  version of  BASIC  gives  you  the  option  of specifying the  file  buffer  size
for  sequential  files  I/0.    The  default  length  is  128  bytes.    This  size  can  be
specified  in  the   OPEN  statement  for  the  sequential   file.     The   sizes   you
specify  are  independent  of the  length  of  any  records  you  are  reading  from
or  writing  to  the  file;  they  only  specify  the  buffer  size.    Larger  buffer  sizes
speed  I/0  operations,  but take  memory  away  from  BASIC.    Smaller buffer
sizes  conserve  memory,  but  produce  lower  I/0  speed.

The  following  statements  and  functions  are  used  with  sequential  data  files:

CLOSE

EOF
INPUT#
INPUTS
USING#
WIDTH

LOO

LOF

OPEN

PRINT#
PRINT
LINE   INPUT#
WRITE#

Creating  a  Sequential  Data  File

Program  1  is  a  short  program  that  creates  a  sequential  file,  "DATA",  from
information  you  enter  at  the  keyboard.

Working  with  Files  and  Devices          5-7



Program  1-Creating  a  Sequential  Data  File

OPEN    ''DATA"    F`OR   OUTPUT   AS    #1

ENTER :

INPUT    "NAME     ('DONE'    TO   QUIT)";NS

IF   NS="DONE"    THEN   GOTO   FINISH

INPUT    "DEPARTMENT"  ;    DEPTS

INPUT    "DATE   HIRED":    HIREDATES
WRITE   #l,NS,DEPTS,HIREDATES

PRINT
COT0   ENTER
F`I NI SH :

CLOSE    #1
END

As  illustrated  in  Program   1,   the  following  program  steps  are  required  to
create  a  sequential  file  and  to  gain  access  to  the  data  in  it:

1.   Open  the  file  in  output  (to  the  file)  mode.

2.  Write  data  to  the  file  using  the  WRITE#  statement.

3.  After  you  have  put  all  the  data  in  the  file,  close  the  file.

A  program  can  write  formatted  data  to  the  file  with  the  PRINT  #  USING
statement.    For  example,  the  statement

PRINT#1,    USING"####.##,";A,B,C,D

can  be  used  to  write  numeric  data  to  the  file  with  commas  separating  the
variables.    The  comma  at  the  end  of  the  using  string  in  PRINT  #  USING
statements   separates   the   items   in   the   file   with   commas.       It   is   good
programming practice to use  "delimiters"  of some  kind to separate  different
items  in  a  file.

5-8          Working  with  Files  and  Devices

`-

EIZI

EE



`-

`\J

-,

If  you  want  commas  to  appear  in  the  file  as  delimiters  between  variables
without  having  to  specify  each  one,  the  WRITE  #  statement  can  also  be
used.    For  example,  you  can  use  the  statement

WRITE   #1,A,BS

to  write  these  two  variables  to  the  file  with  commas  delimiting  them.

Reading  Data  from  a  Sequential  File

Now  let's  look  at  Program  2.    It  gains  access  to  the  file  "DATA"  that  was
created  in  Program  1  and  displays  the  names  of  employees  hired  in  1981.

Program  2-Accessing  a  Sequential  Data  File

OPEN    "I",#1,"DATA"

WHILE    NOT    EOF(1)

INPUT    #1,NS,DEPTS,HIREDATES

IF   RIGHTS(HIREDATES,2)="81"THEN   PRINT   NS
WEND

Program  2  reads  each  item  in  the  file  sequentially  and  prints  the  names  of
employees  hired  in   1981.    When  all  the  data  has  been  read,  the  WHILE
WEND  control  structure  uses  the  EOF  function  to  test  for  the  end-of-file
condition  and  avoids  the  error  of  trying  to  read  past  the  end  of  the  file.

Adding  Data  to  a  Sequential  Data  File

If you  have  a  sequential  file  on  the  disk  and  want  to  add  more  data  to  the
end,  you  cannot simply  open the  file  in  output  mode  and  start  writing  data.
As   soon   as  you   open   a  sequential  file   in   output  mode,   you   destroy  its
current  contents.

Working  with  Files  and  Devices          5-9



Instead,   use  append  mode.     If  the  file   doesn't  already  exist  the   OPEN
statement works  exactly  as  it would if the  output  mode  had been  specified.

The  following procedure  can  be  used  to  add  data  to  an  existing  file  called
"FOLKS.„

Program  3-Adding  Data  to  a  Sequential  Data  File

OPEN    "A",#1,"F`OLKS"
REM***Add   new   entries
NEWENTRY :

INPUT     "NAME"  ;NS

IF   NS   =   ''''THEN   GOT0   FINISH   'Carriage   Return   exits   loop
LINE    INPUT    ''ADDRESS    ?     ",ADDRS

LINE    INPUT    "BIRTHDAY    ?     ",BIRTHDATES
PRINT   #1,    NS
PRINT   #1,    ADDRS
PRINT   #1,    BIRTHDATES
COT0   NEWENTRY

FINISH:
CLOSE    #1

END

The  LINE  INPUT  statement  is  used  for  getting  ADDRS  because  it  allows

you  to  enter  delimiter  characters  (commas  and  quotes).

Random Access  Files

Creating   and   accessing   random   access  files  requires  more  program  steps
than    creating    and    accessing    sequential        files.        However,    there    are
advantages  to  using  random  access  files.     One  advantage  is  that  random
access  files  require  less  room  on   the   disk,  since   BASIC   stores  them  in  a

packed  binary   format.   (A  sequential   file   is   stored   as   a   series   of  ASCII
characters.)

The  biggest   advantage  to  using  random   access   files   is   that   data   can  be
accessed  randomly,  that is,  anywhere  in the  file.   It is  not necessary to  read
through all the information from the beginning of the file,  as  with sequential

5-10          Working  with  Files  and  Devices

`-

`-

'-



-

-

`-

files.    This  is  possible  because  the  information  is  stored  and  accessed  in
distinct  units  called  records.    Each  record  is  numbered.

The  statements  and  functions  that  are  used  with  random  access  files  are:

CLOSE

CVD

CVI
CVL

CVS
FIELD
GET

Creating  a  Random  Access  Data  File

Program  4-Creating  a  Random  Data  File

OPEN    ''R",#1,"DATA",32

FIELD   #1,20   AS   NS,4   AS   AS,8   AS   PS
START :

INPUT    ''2-DIGIT    CODE    (ENTER   -1   T0   QUIT)  ";CODE%

IF   cODEqro=-1   THEN   QulTFILE
INPUT    "NAME"  ;PERSONS

INPUT    "AMOUNT"  ;AMOUNT

INPUT    "PHONE"  ;TELEPHONES

PRINT
LSET   NS   =PERSONS
LSET    AS    =    MKSS(AMOUNT)

LSET    PS   =   TELEPHONES
PUT    #1,CODE%

GOT0   START

QUITFILE :
CLOSE    #1

As   illustrated  by  program   4,   you  need  to  follow  these  program   steps  to
create  a  random  access  file:

1.     OPEN  the  file  for  random  access.     The  absence  of  an  input,
output,   or  append  parameter  specifies  a  random  file.     If  the
record  length  (LEN=)  is  not  specified,  the  default  value  is  128
bytes .

Working  with  Files  and  Devices          5-11



2.     Use  the  FIELD  statement to  allocate  space  in  a  random  buffer
for  the  variables  to  be  written  to  the  random  access  file.    The
random  buffer  is  an  area  of  memory,  a  holding  area,  reserved
for  transferring  data  from  files  to  program  variables  and  vice
Versa.

Here is an example of using the FIELD statement to create a random  access
file :

FIELD   #1,20   AS   NS,    4   AS   ADDRS,    8   AS   P$

3.     To  move  the  data  into  the  random  access  buffer,  use  LSET.
Numeric  values  must  be  made  into  strings  when  placed  in  the
buffer.     To   make   these   values   into   strings,   use   the   ``make"
functions:   MKIS   to   make   an   integer   value   into   a   string   or
MKSS to make  a single precision value into  a  string to be  stored
in  a  random  file.

Here  is  an  example  of  moving  data  into  the  random  access  buffer:

LSET   NS   ~XS
LSET   ADDRS=MKSS (AMT)

LSET   PS   =   TEL$

4.   To   write  the   data  from  the  buffer  to   the   disk,   use   the   PUT
statement  and  specify  the  record  number  with  an  expression,
for  example:

PUT   #1,    CODE%

Program 4 takes information that is input from the keyboard and writes it to
a random access file.   Each time the  PUT statement is  executed,  a record is
written to  the  file.   The  two-digit  code  that  is  input  in  line  30  becomes  the
record  number.

5-12          Working  with  Files  and  Devices

I-

-'

`.J



-

`-

\J

Note:  Do  not use  a  fielded  string variable  in  an  INPUT  or  LET  statement.
BASIC  will  then  redeclare  the  variable  and  will  no  longer  associate  that
variable  with  the  file  buffer,  but  with  the  new  program  variable  instead.

Accessing  a  Random  Access  Data  File

Program   5   gains   access   to   the   random   access   file,   "DATA",   that   was
created  in  program  4.    When  you  enter  a  two-digit  code  at  the  keyboard,
BASIC  reads  and  displays  the  information  associated  with  that  code  from
the  file.

Program  5-Accessing  a  Random  Data  File

OPEN    ''R",#1,"DATA",32

FIELD   #1,20   AS   NS,4   AS   AS,8   AS   PS

START :

INPUT    ''2-DIGIT   CODE     (ENTER   -1    T0   QUIT)  ";CODE%

IF`    CODE%=-1   THEN   QUITFILE
GET    #1,CODE%

PRINT   NS
PRINT   USING    "SS####.##";CVS(AS)

PRINT   PS:    PRINT
GOTO    START

QUITFILE:
CLOSE    #1

Follow  these  program  steps  to  access  a  random  access  file:

1.     OPEN  the  file  in  random  mode.

2.    To   allocate   the   space   in   the   random   access   buffer   for   the
variables  to  be  read  from  the  file,  use  the  FIELD  statement.

(For  details  on  this  procedure,   see  the   FIELD   statement  in
program  5,   directly  above.)

Working  with  Files  and  Devices          5-13



Note:   In   a  program  that  performs   both   input   and   output   on   the   same
random  access  file,  you  can  often  use  just  one  OPEN  statement  and  one
FIELD  statement.

3.     To  move  the  desired  record  into  the  random  access  buffer.  use
the  GET  statement.

The  program  can  now  access  the  data  in  the  buffer.    Numeric  values  that
were   converted   to   strings   by   the   MKIS   and   MKSS   functions   must   be
converted back to  numbers  using the  "convert»  functions:  CVI  for  integers
and  CVS  for  single  precision  values.  The  MKIS  and  CVI  processes  mirror
each  other.  MKIS  converts  a  number  into  a  format  for  storage  in  random
files   and   CVI   converts  the   random   file   storage   into   a   format   that   the

program  can  use.

When   used      with   random   access   files,   the   LOC   function   returns   the
"current  record  number."    The  current  record  number  is  the  last  record

number  that  was  used  in  a   GET  or  PUT  statement.     For  example,   the
following  statement:

IF   LOO(1)    >   50   THEN   END

ends   the   program   execution   if  the   current   record   number   in   file   #1   is

greater  than  50.

Random  File  Operations

Program  6  is  an  inventory  program  that  illustrates  random  file  access.

5-14          Working  with  Files  and  Devices

EE

`-

`-,



-I

-,

-,

Program  6 -  Inventory

OPEN    ''INVEN.DAT''    AS    #1    LEN=39

FIELD   #1.1   AS   FS.30   AS   DS,     2   AS   QS,    2   AS   RS,    4   AS   PS
Funct ionLabe 1 :
CLS:PRINT    "Functions:  ":PRINT
PRINT   ''1.    Initialize   file"
PRINT   "2.    Create   a   new   entry"
PRINT   "3.   Display   inventory   for  one   part"
PRINT    ''4.    Add   to   stock"
PRINT
PRINT
PRINT

5.    Subtract.   from   stock"
6.   Display   all   it,ems   below   reol`der   level"
7.   Done   wit,h   this   program"

PRINT:PRINT: INPUT    "Function" ;FUNCT
IF    (FUNCT>0)    AND    (FUNCT<8)    THEN   GOT0   Start

GOTO   FunctionLabel
St.art, :
ON   FUNCT   GOSUB    600,loo,ZOO,300,400,500,700

IF   FUNCT<7   THEN   GOT0   FunctionLabel
END

loo:
GOSUB   par.t
IF   ASC(FS)<>255   THEN   INPUT       "Overwrite";confirms

IF   ASC(FS)<>255    AND   UCASES(confirms)<>"Y''    THEN   RETURN
LSET   FS=CHRS(O)

INPUT   "Description   ";descript.ions
LSET   DS=descriptions
INPUT   "Quantit,y   in   st,ock   ";Quantity%
LSET   QS=MKIS(Quantit,y%)
INPUT   "Reorder   Level    ";reorder%
LSET   RS=MKIS(I`eol`der%)

INPUT    "Unit   pl.ice    ";price
LSET   PS=MKSS(price)
PUT   #1,part,%
INPUT    "Press   RETURN   t,o   continue",DUMS
RETURN

ZOO:

GOSUB   part
IF   ASC(FS)=255   THEN   GOSUB   NullEnt,ry:RETURN

PRINT   USING    "Part   Number   ###";part.%
PRINT   DS
PRINT   USING   "Quantity   on   hand   #####";CVI(QS)
PRINT   USING    "Reol.der   level   #####";CVI(RS)
PRINT   USING    "Unit   price   SS##.##";CVS(PS)
INPUT    ''Press   RETURN   t,o   continue",DUMS
RETURN

300:

GOSUB   part.
IF   ASC(FS)=255   THEN   COSUB   NullEntry:RETURN
PRINT   DS

\\'orking  with  Files  and  Devices          5-15



PRINT    "Current   quant,ity:    ";CVI(QS)
INPUT   "Quantity   to   add" ;additional%
Q%=CVI (QS) +addit ional%
LSET   QS=MKIS(Q%)

PUT   #1,part%
RETURN

400:
GOSUB   part

IF   ASC(FS)=255   THEN   GOSUB   NullEnt.ry:RETURN
PRINT   D$

425:

INPUT   "Quantity   t.o   subtract";less%
Q%=CVI  (QS)
IF    (Q%-less%)<O   THEN   PRINT    "Only    ";Q%;"    in   stock":GOTO   425

Q%=Q%-|ess%
IF   Q%<=CVI(RS)    THEN   PRINT    "Quant,ity   now    ";Q%
LSET   QS=MKIS(Q%)

PUT   #1,part%
INPUT    "Press   RETURN   to   continue",DUMS
RETURN

500:
reorder=o
FOR   1=1   T0   loo
GET   #1,I
IF   ASC(FS)=255   GOTO   525
IF   CVI(QS)<CVI(RS)    THEN   PRINT   DS;"   Quant,it,y

"  ;CVI  (QS)  ;TAB (30)

IF   CVI(QS)<CVI(RS)    THEN   PRINT    "Reorder   level    ";CVI(RS)
IF   CVI(QS)<CVI(RS)    THEN   reorder=(-1)

525:

NEXT    I

IF`   reorder=O   THEN   PRINT    "All   items   well-stocked.  "
INPUT    ''Press   RETURN   to   continue",DUMS
RETURN

600:
INPUT    ''Are   you   sure";confirms
IF   confirms<>"y"   AND   confirms<>"Y"   THEN   RETURN
LSET   FS=CHRS(255)

FOR   1=1   T0   loo
PUT    #1,I
NEXT    I
RETURN

part :
Enterno:

INPUT    ''Part   number?    '',pal`t%
IF    (part%<1)    OR    (part,%>100)    THEN   PRINT    "Bad   pal`t   number"
IF    (part%<1)    OR    (part%>100)    THEN   GOT0   Enterno
GET   #1,part%
RETURN

Nu I |Ent. ry :

5-16          Working  with  Files  and  Devices

-,

E=E

`u



-

-

-

PRINT    "Null   Ent,ry."
INPUT    "Please   press   RETURN",DUMS
RETURN

700    :    CLOSE   #1

RETURN

Transferring Data Between BASIC
and a Word Processor

Remember    that    word    processing    programs    produce    files    with    more
characters  than  the  visible  ones  in  your  text.     Many  word  processors  use
special  hidden  characters  to  control  appearance  and  format  and  to  control
the  printer.    These  characters  can  ruin  your  program  file.

Most,  but not all,  word processing programs have  a filing option called  "text
only"  or  "unformatted"  or  "non-document."    When  text  is  filed  with  this
option,   all  the  hidden  control  characters  are  removed.     Only  the  text  is
filed.

Also,  if  you  write  a  program  in  Amiga  Basic  and  later  wish  to  use  a  word

processor  to  edit  it,  prepare  the  program  first.    When  you  save  the  BASIC
program,  use the  ",A"  (ASCII)  option  in the  SAVE  statement  which  saves
the  program  in  a  format that  can be  read by  the  word  processing program,

Working  with  Files  and  Devices          5-17



-'

`-

`-



Advanced Topics

-

`-

-

Chapter 6

Amiga     Basic    supports    several    advanced    programming
features    including    subprograms,         event    trapping,    and
memory    management.        These    powerful    features,    not
necessary  for  beginners  to  master,  add  flexibility  to  Amiga
Basic.      They   are   especially   helpful   to   programmers   who
develop  programs  for  other  users.

Subprograms  are  modules  similar  to  subroutines  but  with
major      advantages.      They      are      especially      helpful      to

programmers  who  write  routines  that  are  reused  in  other
programs.

Advanced  Topics          6-1



Event  trapping  allows  a  program  to  transfer  control  to  a  specific  program
line   when   certain   events   occur.   These   events   include     passage   of  time,
mouse  activity,  a user's  attempting to  stop the program,  or  menu  selection.

Memory   management   in   Amiga   Basic   is   available   through   use   of   the
CLEAR statement  and  the  FRE  function.   These  tools  can  help  you  create
large programs that would ordinarily not run because of the  Amiga's limited
memory.

Subprograms

Subprograms  are  sets  of program  statements  similar  to  subroutines.    There
are  three  notable  advantages  to  using  subprograms.

First,   subprograms   use   variables   that   are   isolated   from   the   rest   of  the

program.       If   a   programmer   accidentally   uses    a   variable   name   in    a
subprogram   that   has   already   been   used   in   the   main   program,   the   two
variables   still   retain   separate   values.      Variables   within   subprograms   are
called  local  variables  because  their  values   cannot  be   changed  by  actions
outside  the  subprogram.

The   second  advantage   of  subprograms   is   also   related  to   local   variables.
Programmers  frequently  find  themselves  producing  the  same  routine  over
and  over  in  different  programs,   rewriting  it  each  time  to  fit  the   variable
names and design of each new program.   Because  you  don't  need to  rewrite
a  subprogram  to  include  it  in  another  program,   it  is  simple  to  produce  a
collection   of  subprograms.      Subprograms   then   can   be   merged   into   new

programs  with  minimal  changes.

The   third   advantage   of   subprograms   is   that   they   cannot   be   executed
accidentally.      A   subroutine   can   be   executed   accidentally   if   no   GOTO
statement is stationed above it; program flow simply enters the subroutine.

Subprograms  do  not  execute  unless  a  specific  CALL  to  the  subprogram  is
executed.

6-2         Advanced  Topics

`-

`-

RE



ERE

\-

`-

Referencing  Subprograms

Subprograms   are   referenced   by   the   optional   CALL   statement   with   an
argument  list.    (See  ``CALL"  in  Chapter  8,  "BASIC  Reference,"  for  more
information.)

In  this  discussion,   you  will  find  references  to  "formal  parameters"   and
"arguments."    Arguments  refer to  the  program variables  that  are  passed  in

the  CALL  statement.    For  example:

CALL   FIGURETAX(SUBTOTAL,    TAX,    TOTAL()  )

In  this  example,  the  arguments  are  the  variables  SUBTOTAL  and  TAX,
and  the  array  variable  TOTAL.

Formal parameters refer to the parallel values that the subprogram uses.   If,
for   example,   the   FIGURETAX   subprogram   was   called  using  the   above
CALL  statement,  the  subprogram's  first  line  could  appear  as:

SUB   FIGURETAX(FIGURE,    TAXRATE,    SUM(1) )    STATIC

In    this  example,   the  formal  parameters  are  the  variables   FIGURE  and
TAXRATE,   and  the  array  SUM.    These  parameters  correspond  to   (and
return    values    to)    the    main    program    variables    used    as    arguments:
SUBTOTAL,  TAX,  and  TOTAL(  ).

The parameters that transfer between the main body of the program and the
subprogram  are  said  to  be  passed  by  reference.  This  means  if  the  formal
parameter  is  modified  by  the  subprogram,   the  argument's  value  changes
also ,

This  can  affect  the  values  of  variables.  For  example:

CALL   Addlt,(A,B,C)

SUB   Addlt,(X,Y,Z)    STATIC
Z-X+Y

Advanced  Topics          6-3



X   -   X   +   12
Y   -  Y   +   94

END   SUB

If   the   values   of   the   variables   when   the   program   executes   the   CALL
statement  are  A  =  2  and  8  =  3,  then  when  control  returns  to  the  main

program,  A  and  a  would  have  altered  values.    The  A  variable  is  tied  to  X,
and  8 to  Y.   If the  value  of X  is  changed  in  the  subprogram,  the  value  of  A
is  altered  as well.    In this  example,  the  value  of  A  is  increased  by  12  in  the
statement X = X +  12.   This  subtle  change  happened because the  variable  X
is  an  "alias"  for  the  variable  A.

In the  cases  where  you want the  main program variable's  value  to  change  in
the  subprogram,  this  works  well.   Where  you  don't want this to  happen,  put

parentheses  around  the  variables  and  they'll  retain  their  values,  regardless
of  what  happens  in  the  subprogram.    For  example:

CALL   Addlt,((A),     (a),    Result)

The   parentheses   around   the   first   two   parameters   force   them   into   the
category  of  expressions.  Their  values  cannot  be  changed  by  subprograms.
You  need  not  use  parentheses  to  pass  expressions.    For  example:

CALL   Addlt (I+2 , 3*A, Result,)

Note   that   the   type   of   arguments   must   match   the   type   of   the   formal

parameters  or  a  type  mismatch  error  will  result.    For  example,

CALL   Dolt(1)
SUB   Dolt    (x)    STATIC

would   fail   because   it   tries   to   pass   the   integer   1   to   the   single-precison

parameter  x.

CALL   Dolt,(1.O)

SUB   Dolt(x)    STATIC

would  avoid  this  error.

6-4         Advanced  Topics

-

`-



Subprogram Delimiters:  The  SUB  and  END  SUB  Statements

Subprograms    are  delimited  by  the  SUB  and  END   SUB  statements.   The
EXIT   SUB   statement   also   can   be   used   to   exit   a   particular   subprogram
before  it  reaches  the  END  SUB  statement.    Execution  of  an  EXIT  SUB  or
END  SUB  statement transfers program   control back to  the  calling routine.

The  syntax  is  as  follows:

SUB     subprogram-name   r. (formal-parameter-list) |   STA;TIC
[ SHARED   J(.sf-o/-vczr/.czGJes ]

RE\

-

-

END   SUB

The  sc{bprogrczm-nczme    can  be  any  valid  identifier  up  to  40  characters  in
length.    This  name  cannot  appear  in  any  other  SUB  statement.

The   /ormc}/-pczrczmefer-//.sf    can    contain    two    types    of    entries:    simple
variables  and  array  variables.     If  you  are  planning  to  use  array  variables,
read    "Declaring   Array   Parameters"    below.       Entries    are   separated   by
commas.     The   number   of  parameters   is   limited   only  by  the   number   of
characters  that  can  fit  on  a  BASIC  line.

STATIC  indicates  that  all  the  variables  within  the  subprogram  retain  their
values   between   invocations   of   the   subprogram.       Static   variable   values
cannot   be   changed   by   actions   taken   outside   the   subprogram.   STATIC
requires  that  the  subprogram  be  non-recursive;  that  is,  it  does  not  contain
an instruction that calls itself or that calls  a subprogram that in turn  calls the
original  subprogram.

SHARED   variables   can  be   altered  by  parts   of  the   program   outside   the
subprogram.    Those  variables  you  want  shared  must  be  explicitly  listed  in
the    /!.sf-o/-vczri.cib/es    following   the    SHARED    statement.        Any    simple
variables  or arrays referenced in the subprogram are  considered local unless
they  have  been  explicitly  declared  SHARED  variables.    See  "SHARED"  in
Chapter    8,     "BASIC    Reference,"    for    a    discussion    of    the    SHARED
statement.

Advanced  Topics          6-5



The  statements that make up the body  of a  subprogram  are  enclosed by the
SUB  and  END  SUB  statements.

All   BASIC   statements   can   be   used   within   a   subprogram,    except   the
following:

•      User-defined  function  definitions.

•      A  SUB/END  SUB  block.    This  means  subprograms  cannot  be
nested.

•      COMMON  statements

•      CLEAR  statements

Declaring Array  Parameters

Simple    variable    parameters  can  be  given  any  valid  Amiga  Basic  name.
Arrays  must  be  declared  as  follows

arrcry-name  ( Enumber-of -dimensions| )

where  c2j.rczy-nc2me  is  any  valid  Amiga  Basic  name  for  a  variable  and  the
optional  7twmber-o/-d!.77tens!.o7ts     is     an     integer     constant   indicating  the
number of dimensions in the array.   Note that the actual dimensions  are not
given  here.
For  example,  in  the  following  subprogram,

SUB      MATADD2(N%,M%,A(2),B(2),C(3))        STATIC

END   SUB

N%   and   M%   are   integer   variables,    and   A   and    8    are   indicated    as
two-dimensional  arrays,  while  C  is  a  three-dimensional  array.

6-6         Advanced  Topics

`-

ERE

EE



-

-'

-

Simple Variables  and Array Elements

When  a  simple  variable  or  array  element  or  an  entire  array  is  passed  to  a
BASIC  subprogram,   it  is   passed  by   reference.      The   following  example
shows how a subprogram is  invoked by the  CALL statement,  and illustrates
call-by-reference  argument  passing:

A  -5    :   8   -2
CALL   SQUARE(A,B)
PRINT   A,B
END

SUB   SQUARE(X,Y)    STATIC

Y   =   X*X

END   SUB

This   example   prints   the   results   5   and   25.      Each   reference   to   Y   in
Subprogram   SQUARE   actually   resulted   in   a  reference   to   8,   and   each
reference  to  X  resulted  in  a  reference  to  A.     In  other  words,   each  time
SQUARE  used  Y,  it  was  actually  using  8.

Argument  Expressions

Expressions  also  can  be  passed  as  arguments  to  BASIC  subprograms.    An
argument   expression   is   considered   to   be   any   valid   BASIC   expression,
except simple  variables  and  array  element  references.    When  an  expression
is  encountered  in  the  argument  list  in  a  CALL statement,  it  is  assigned  to  a
temporary     variable   of  the   same  type.     This   variable   is  then  passed  by
reference    to    the    subprogram.        This    is    equivalent    in    effect    to    the
call-by-value  passing  in  functions,  whereby  the  value  itself  is  passed.

If     a     simple  variable  or  array  element  is  enclosed  in  parentheses,   it  is

passed  the  same  way   as   an  expression   (that  is,   as   call-by-value).     For
example,   if  the   CALL  SQUARE  statement   in  the   above   example   were
changed  to

CALL   SQUARE    (A,  (a)     )

Advanced  Topics         6-7



the   results  printed   would   be  5  and  2.    In  this  case  (8)  is  passed  by  value
as  an  expression,  and therefore  the  subprogram  cannot  change  the  value  of
a.

Note:     Arrays  should  not  be  passed  as  parameters  to  assembly  language

procedures using the  conventions  outlined.   Instead,  the base element of an
array  should be passed by  reference  if the  entire  array  needs  to  be  accessed
in  the  assembly  language  program.    For  example:

CALL   X(VARPTR    (A(O,O)))

Shared  and  Static Variables  in  Subprograms

Variables  and  arrays  referenced  or  declared  in  subprograms  are  generally
considered  to  be  local  to  the  subprogram.    However,  Amiga  Basic  supports
shared   variables   within   a   module   and   provides   a   way   for   values   to   be
preserved  across  subprogram  invocations.

Shared  Variables

By using the  SHARED  statement in a  subprogram,  you  can  access  variables
without  passing  them  into  a  subprogram  as  parameters.

Within a  subprogram,  main program  variables  can be  used by including the
SHARED  statement.   The  SHARED  statement  only  affects  variables  within
that  subprogram.

For  example:

LET   A=1:    LET   8=5:    LET   C=10

DIM   P(loo)  ,Q(loo)

6-8         Advanced  Topics

-'

`-

`-



-

`-

-,

SUB   AMIGA   STATIC

SHARED   A , a , P ( )  , Q ( )

END   SUB

In this  example,  all  main program variables  and  arrays  except  C are  shared
with  the  subprogram  AMIGA.

Static  Variables

As    already   noted,    variables    and    arrays    referenced    or    declared   in    a
subprogram  are  considered  local  to  the  given  subprogram.     They  are  not
changed  by  statements  outside  of the  subprogram.    Initial  values  of  zero  or
null  string  are  assumed.

If the subprogram is exited  and then reentered,  however,  variable  and array
values  are  those  present  when  the  subprogram  was  exited.

The  STATIC  keyword  is  required  for  all  subprogram  definitions  in  Amiga
Basic.

Array  Bound  Functions

The   upper   and   lower   bounds   of   the   dimensions   of   an   array      can   be
determined    by  using  the  functions,  LBOUND  and  UBOUND.

LBOUND  returns  the  lower bound,  either  0  or  1,  depending  on the  setting
of the  OPTION BASE statement.   The  default lower bound is  0.   UBOUND
returns  the  upper  bound  of  the  specified  dimension,

Each  function  has  two  syntaxes:   a  general  syntax  and  a  shortened  syntax
that  can be  used  for  one-dimensional  arrays.    The  syntaxes  are  as  follows:

Advanced  Topics          6-9



LBOUND (c}rrcly)                                      for   1-dimensional  arrays
LBOUND (c]rray , d!.in )                          for  n-dimensional  arrays
UBOUND (czrrczy )                                       for   1-dimensional  arrays
UBOUND (czrrciy , d!.in )  I                         for  n-dimensional  arrays

The  czrrciy  is  a  valid  BASIC  identifier  and the  d!.in  argument is    an  integer

Constant    from    1  to  the  number  of  dimensions  of  the  specified  array.

LBOUND  and  UBOUND  are  particularly  useful  for    determining   the  size
of    an    array  passed  to  a  subprogram.

See  "LBOUND"  in  Chapter  8,   "BASIC  Reference,"  for  examples  of  the
use  of  array  bound  functions.

Event Trapping

Event  trapping  is  a  programming  capability  through  which  a  program  can
detect   and   respond   to   certain   "events"   and   branch   to   an   appropriate
routine.   The events that can be trapped are time passage  (ON TIMER),  the
user attempting to halt the program  (ON BREAK) ,  the selection of a custom
menu item  (ON MENU),  or  mouse  activity  (ON MOUSE).    BASIC  checks
between   each   statement   it   executes   to   see   if  the   specified   events   have
happened.

To  use  event  trapping,  the  programmer  builds  a  subroutine  to  respond  to
the  event.   Then,  if the program  has  activated  event trapping for the  event,

program  control  is  automatically  routed  to  the  event-handling  subroutine
when the  event occurs.    BASIC  does this  exactly   as  if a  GOSUB  statement
had  been  executed  to  the  event-handling  subroutine.

The  subroutine,  after  servicing  the  event,  executes  a  RETURN  statement.
This   causes   the   program   to   resume   execution   at   the   statement   that
immediately   follows   the   last   statement   executed   before   the   event   trap
occurred.

This   section   gives   an   overview   of  event  trapping.      For   more   details   on
individual  statements,  see  Chapter  8,   "BASIC  Reference."

6-10         Advanced  Topics

`-

`-

`-



-

-

`-,

Event  trapping  is  controlled  by  the  following  statements:

evenfspecj/j'er  oN               to  turn  on  trapping
evenfs'pec!/j.er  OFF            to  turn  off  trapping
evenfspecj./i.er  STOP          to  temporarily  turn  off  trapping

The  evenfspec!/j.er  must  be  one  of the  following:

TIMER                 The  timer  is  the  Amiga's  internal  clock.    If  you  use  timer
event  trapping,   you  can  force  an  event  trap  every  time  a
given  number  of  seconds  elapses.

MOUSE

MENU

BREAK

Mouse  event  trapping  allows  the  programmer  to  redirect
program  flow  when  the  mouse  is  clicked  by  the  user.

If menu event trapping has been activated,  the program can
use  selection  of  custom  menu  items  as  events  to  trap.

When break  event trapping is  activated,  the  program  sends
control  to   a   specified   subroutine   when   the   user   presses
Right  Amiga-period,  the  break  keystroke.    Care  should  be
taken  when  using  break  event  trapping.    If  a  programmer
uses  the  statement  in  a  program  being tested,  the  program
cannot be  exited before  a  program  END  statement  without
rebooting   the   Amiga.    One   way   to   avoid   this   potential

problem is to  omit the  BREAK  ON statement that  activates
the  ON  BREAK  event  trap  until  testing  is  completed.

COLLISION       This  routine  is  invoked  whenever  an  object  created  by  the
OBJECT.SHAPE  statement  collides  with  another  object  or
window  border.

ON...GOSUB  Statement

The     ON    GOSUB    statement    tells    BASIC    the    starting    line    of    the
event-handling  subroutine.    The  format  is:

ON   eventspecifier  COSuB   line

Advanced  Topics          6-11



A  J!.ne  of  zero  disables  trapping  for  that  event.

Activating  Event  Trapping

When  an  ever!fspec!./;.er  is   ON  and  if  a  non-zero   line   number  has  been

Specified  in the  ON  GOSUB  statement,  each  time  Amiga  Basic  starts  a  new
statement  it  checks  to  see  if  the  specified  event  has  occurred.

An  event  will  not be  trapped  by  the  ON  even/specj/c.er  statement  unless  the
corresponding  eve7tfxpecc./!.er  ON  statement  has  been  previously  executed.

Terminating  Event  Trapping

When  the  eve7tfspec!/j.er  is  OFF,  no  trapping  takes  place,   and  the  event  is
not  remembered  if  it  takes  place.

Suspending  Event Trapping

When  the  evenfspcc!/{.er  is  stopped,  no  trapping takes  place.    However,  the
occurrence  of  an  event  is  remembered   so  that  an  immediate  trap  takes

place   when   an  cve7tfspec!/j.er  ON  statement   is   executed,   if  the   specified
event  has  occurred  while  the  eve"fspec//j.er  was  stopped.

When  a  trap  is  made  for  a  particular  event,  the  trap  automatically  causes  a
STOP  on  that  evenfspec!./t.er,  so  recursive  traps  can  never  occur.    A  return
from   the   trap   routine   automatically   reenables   the   event   trap   unless   an
explicit  OFF  has  been  performed  inside  the  trap  routine.

Note:    Once    an   error   trap   takes   place,    all   trapping   of   that    event   is
automatically  disabled  until  a  RESUME  statement  is  executed.

6-12          Advanced  Topics

`-

`-

\-



Memory Management

Amiga   Basic   includes   the   CLEAR   statement   to   help   writers   of   large

programs  manage  memory  allocation  for  different  purposes.

Using  the  CLEAR  statement,   you  can  control  the  size  of  three  different
areas  of  memory:

•     Thestack

•      BASIC's  data  segment

•     Theheap

The  Stack

EE

-

-

The  stack  keeps   "bookmarks"   telling  where  to  return  to  from  GOSUBS,
nested       subprogram       calls,       nested       FOR...NEXT       loops,       nested
WHILE/WEND  loops,  and  nested  user-defined  functions.

Conserving  Stack  Space

Certain  Amiga  ROM  calls  require  a  considerable  amount  of  stack  space.
The  more  levels  of nesting in  your  control  structures,  the  more  stack  space
is  required  to  execute  a  program.

BASIC's  Data  Segment

BASIC's  data  segment  holds  the  text  of the  program  currently  in  memory.
It   also   contains   numeric   variables   and   strings.      In   addition,   the   data
segment  contains  file  buffers  for  opened  files.

Advanced  Topics         6-13



Conserving  Data  Segment  Space

A  sequential  file  buffer  has  a  default  size  of  128  bytes.    If  your  program  is
tight for memory,  one memory reclamation technique  is to  define  a  smaller
sequential  file  buffer.     A  smaller  buffer  may   slow   execution   of  an   I/0
intensive    program,    however.        See    "OPEN"    in    Chapter    7,     ``BASIC

Reference,"    for    details    on    changing    a    sequential    file's    buffer    size.
Additionally,  the  kind  of  numeric  variables  you  use  will  have  an  effect  on
data segment space.  Integer variables take half the number of bytes  of single
precision;    single   precision   take   half   the   number   of   bytes    of   double
precision.   Also,  chaining several small programs together uses  less  memory
than  loading  and  running  a  large  program  that  incorporates  all  the  smaller
Ones.

The  System  Heap

The  system  heap  contains  the  buffer  for  SOUND  and  WAVE  information,
which,    when    created,    uses    1024    bytes    of    RAM.        The    LIBRARY,
WINDOW.  and  SCREEN statements  also  consume  memory  from the  heap.
Amiga   Basic   shares   the   System   Heap   with   other   tasks   running   on   the
Ami8a.

Conserving  Heap  Space

Heap  space  can  be  kept  smaller  by  releasing  the   SOUND/WAVE  buffer
with  a  WAVE  0  statement  when  it  is  no  longer  needed.

Using  the  CLEAR Statement  for Memory  Management

You  can  use  the  CLEAR  statement  to  allocate  memory  to  three  areas  of
RAM.

The  syntax  of  the  CLEAR  statement  is:

6-14          Advanced  Topics

`-

`-

`-



-

\_,

EE

CLEAR    [ ,  [dc!fc}-segmenf-s!.ze]  [ ,  |srack-sj.ze] ]

The   dc"c}-segmenf-s!.ze   argument   dictates   how   many   bytes   are   to   be
reserved  for  BASIC's  data  segment.

The sfc!ck-sc.ze  argument dictates how many bytes  are to be  reserved for the

stack.

The amount of RAM remaining  (Total -(dczfa-s'egmenf +sfack sz.ze ))  is the
RAM  reserved  for  the  heap.    Using  the  CLEAR  statement,  your  program
can define the space it requires for the three adjustable  areas of RAM.   You
can use  the  ERE  functions  to  find  out  how much  free  memory you  have  in
parts  of  RAM.

Using the  FRE Function for Memory Management

The  syntaxes  of  the  FRE  function  are:

FRE ( n )

FRE("    ")

In  the  FRE(n)  syntax,  there  are  three  different  functions.

1.     If   (n)   is   -1,   the   function   returns  the   number   of  free  bytes
available  in  the  heap.

2.     If   (n)   is  -2,  the  function  returns  the  number  of  bytes  never
used  by  the  stack.     This  does  not  return  the  number  of  free
bytes  available  in  the  stack.   It  is  used  in  testing  programs  to
fine-tune  the  sfc!ck-sj.ze  parameter  of  the  CLEAR  statement.

3.     If  (n)  is  any number other than -1  or -2,  or if you use the  FRE
("    ")    function,    BASIC   returns   the   number   of   free   bytes
available  in  BASIC's  data  segment.

All  versions  of  the  FRE  function  compact  string  space.

Advanced  Topics          6-15



iRE

`-

-,



-`

EE

RE`

Chapter 7

Creating Animated Images

This  chapter  describes  the  Object  Editor,  a  utility  program
supplied    with    Amiga    Basic    that     creates     images     for
manipulation   by   Amiga    Basic    animation    routines.        It
includes   both    an    overview    of   the    Object    Editor    and
step-by-step  instructions  for  creating  an  image.

Creating  Animated  Images          7-1



Overview

Amiga   Basic   implements   the   animation   facilities   built   into   the   Amiga
system    through    program    statements    and    the    Object    Editor.        The
COLLISION and  OBJECT statements  (described  in  Chapter  8)  manipulate
images  in  the  output  window.    The  Object  Editor  defines  these  images  (or

oby.eccs,  as  they  are  referred  to  throughout  this  book).

With  the  Object  Editor.  you  can:

•      instantly   create   ovals,   rectangles,   and   lines   by   moving   the
mouse  between  two  points  on  the  Object  Editor  ccznvczs,  which
is   the   portion   of  the   Output   window   where   you   create   the
Object.

•      draw  free-form  across  the  canvas  with  the  Object  Editor  pen

•      select  colors  that  form  the  borders  of  the  object  you  create

•      paint  the  interior  of  the  objects  with  the  color  you  desire

•      erase  and  edit  the  images  as  required

After  creating  an  object,  you  save  it  in  a  file  whose  name  you  specify;  the
file  contains  the  static  attributes  (including  the  size,  shape,  and  color)  of
the  object.    To  animate  the  object  from  a program,  open the  file,  read  the
contents  as a string,  and then use the  OBJECT.SHAPE to  define the  object
to  your  program.     For  an   example   of  statements   that   do   this,   see   the
OBJECT.SHAPE  description  in  Chapter  8  of this  manual.

Note:   The  Object  Editor assigns  attributes to  objects to  ensure that,  during
program execution,  they collide both with each other and with the border of
the   window.   You   can   change   this   initial   setting  using   an   OBJECT.HIT
statement  (described  in  Chapter  8)  in  your  program.

7-2         Creating  Animated  Images

-

`-

`u



The Editor Window

This   section   explains   the   layout   of   the   Object   Editor   window    (shown
below),  where  you  create  draw  your  objects.

The  following  paragraphs  explain  the  items  in  the  window:

Menu  Bar

Two   menus   are   available:     File   and  Tools.       The  Tools   menu  provides
several  methods  of  creating  images.    The  File  menu  provides  a  means  of
retrieving and  saving the  object  files  you  create;  these  menus  are  described
in  the  next  section.

Creating  Animated  Images          7-3

-

`-

--



Canvas

The  Canvas,  located  in  the  upper  lefthand  corner,  is  where  you  create  and
color   (as  well  as  erase)   objects.

You  can increase the  size  of the  canvas  by placing the pointer  in  the  Sizing
Gadget  and,   while  holding  down  the  mouse   Selection  button,   move  the
mouse until the  canvas  reaches  the  desired  size.    If the  new  size  uses  more
memory  than  is  available,  the  following  message  appears:

OUT  OF   MEMORY:    decrease   picture   size

When this happens,  reduce the size of the  canvas before  continuing.   If you
are  creating  a  sprite  (a  sprite  is  one  of two  types  of  objects  you  can  create,
and   is   described   later   in   this   chapter),   you   cannot   increase   the   width
beyond  the   size   displayed   (16  pixels,   from   0  to   15);   you   can,   however,
increase  the  height.

Color  Choice  Bar

The  Color  Choice  Bar provides the  means  of changing the paint  and border
colors  for  objects.    To  change  the  color,  move  the  pointer  over  the  desired
color  and  click the  Selection button.   The  characters  in  the  word  CoJor that
appear  next  to  the  bar  change  to  the  color  you  select.

The number of color choices  in  the  Choice  Bar depend  on the  depth  of the
screen,  as  determined  by  the  depfA  parameter  in  the  SCREEN  statement
(see  Chapter  8  for  a  description  of  this  statement).

7-4          Creating  Animated  Images

EE

`-



Status  Line

To  the  left  are  the  X  and  Y  coordinates;  they  indicate  the  position  in  the
canvas where the  Selection button was last pressed.   Next, the current Tools
selection  item  (Pen,  Oval,  Line,  Rectangle,  Paint,  or  Eraser)  appears.    To
the right of this  item is the number  of bytes  available to  expand the  canvas,
or,   during  an  error  condition,  the  number  of  bytes  you  must  reduce  the
canvas  before  continuing.

The Editor Menus

The  following  table  summarizes  the  items  in  the  File  menu.

Open

Save

Save  as

Quit

`-

-I

`-

Function

Erases   the   screen   and  restores   the   canvas  to   its   original
dimensions  if  they  have  been  changed.

Prompts  you  for  the  name  of  an  existing  file.    You  specify
the  name  of  any  file  previously  created  through  the  Object
Editor  and  press  RETURN.

Saves the  file under the  same  name  as  it was  opened.   The
Object  Editor prompts  you  for  a  file  name  if you previously
chose  New.    Enter  the  name  and  press  RETURN.

Prompts   for   a   file   name.       Specify   a   name   and   press
RETURN.

Causes  an  exit  from  the  Object  Editor  and  returns  you  to
Amiga  Basic.

Creating  Animated  Images          7-5



The  following table  summarizes  the  items  in  the  Tools  menus.

Item

Pen

Line

Oval

Rectangle

Erase

Paint

Function

Allows  free~form  drawing.

Draws  a  straight  line  between  two  points.

Draws  an  egg-shaped  image.

Draws  a  rectangle.

Removes  images  from  the  canvas.

Permits  coloring  the  interior  of  an  image  with  the  current
color  choice

A Note about Bobs and Sprites

The   Amiga   system   recognizes   two   types   of  objects;   Amiga   terminology
refers to these  objects  as s.pr!.res and bobs.   The  Object  Editor prompts  you
to   select   either   a   sprite   or   a   bob   before   you   can   define   the   object.
Therefore,  you  must  be  aware  of the  differences  between  these  two  object
types   before   defining   one.        (If   you   are    already   familiar   with   these
differences,  skip  to  the  next  section  of the  chapter.)

The  following  table  summarizes  the  major  difference  between  sprites  and
bobs:

7-6         Creating  Animated  Images

`-

`-

-`



EH

-,

Bobs

Move  slower  than  sprites.

Size  is  limited  only  by  memory  available.

Full  set  of  colors  allowed.

All  bobs  can  be  displayed.

Any  screen  depth  is  allowed

SI)rites

Move  faster  than  bobs.

Width  must  be  16.

Only  3  colors  allowed.

Only     four      sprites      with
different     colors     can     be
shown  on  the  same  line  at
the  same  time.

Screen   depth   must   be   2.
The   depth  corresponds  to
the  value  specified  for  the
dep/A    parameter    of    the
SCREEN    statement;     see
SCREEN  in  Chapter  8  for
details.

For  details   on  bobs   and  sprites,   see   the   Graphics   Animation   Routines
chapter  ±n the  Amiga  ROM  Kernel  Manual.

How to Create Objects

The   Object   Editor   resides   on   the   Amiga   Basic   disk   under   the   name
obL/.ed!.f .bc2s.   You open   the editor and start operations just as you would any
other  Amiga  Basic  program  (Chapter  2  gives  the  steps  to  achieve  this.)
Then,  follow  the  steps  listed  below:

1.    Once  you've  opened  the  Object  Editor,  the  following  prompt
appears:

Creating  Animated  Images         7-7



Enter  1   if  you  want  to  edit  sprites
Ent,er  0   if  you  want,   t,o  edit  bobs  >

Make  the  desired  selection  and  press  RETURN.

2.     Next,   the   Object  Editor  window     appears.        From  the  Files
menu,  select  New  (to  create  a  new  object)  or  Open  (to  modify
an  existing  object).

3.     From  the  Tools  menu,     choose  how  you  want  to   create  the
image:   drawing  free-form  with  the  pointer,  or  by  drawing  an
oval,  rectangle,   or  line.     Choose  Erase  to  remove  any  part  of
the  object.

Move  the  pointer  to  the  starting  position  on  the  canvas,  press
the  Selection button  and hold  it  down,  move  the  pointer  to  the
end  position,   and  then  release  the  button.     The   drawing  or
erasure  stops  when  the  pointer  moves  outside  the  frame  and
resumes  when  it  returns.

Note  that  when  creating  an  oval,   a  rectangle  appears   on  the
canvas;    upon    releasing   the    button,    an    oval    replaces    this
rectangle.

4.    To  change  colors,  move  the  pointer  to  the  color  choice  bar  at
the  bottom  of the  screen,  and  then  click  the  Selection  button.
The  Object Editor then  outlines  each  new  image  created  on the
screen  with  this  color.

5.    To paint the  interior of an image,  choose the desired  color from
the  choice  bar;  then  choose  Paint  from  the  Tools  menu,  move
the pointer to the region you want to paint,  and press the mouse
button.

The area you paint should be entirely surrounded by an outline.
Otherwise,  if  a  broken  border  exists,  the  color  "leaks"  out  into
the  surrounding  area.

7-8          Creating  Animated  Images

`U

`-

`-



`-

•.-I

`-,

6.    To   make  the   canvas  bigger,   place  the  pointer   in   the   Sizing
Gadget,  hold  down  the  Selection button,  and  move  the  mouse
until  the  canvas  reaches  the  desired  size.

Amiga  Basic  treats  the  canvas  as  one  object,  regardless  of the
number  of  distinct  images  drawn  on  it.    Multiple  objects  must

be  drawn  on  separate  canvases  and  saved  in  distinct  files.

7.    After  completing the  object,  choose  Save  As  (when  creating  a
new  object)  or  Save  (when  editing  an  existing  object).

Creating  Animated  Images          7-9



-



EE

-/

-

Chapter 8

Amiga Basic Reference

The  first part  of this  chapter  describes  the  elements  of the
Amiga  Basic  language  and  the  syntax  and    grammar  that
applies  to  the  language.    The  second  part  is  the  Statement
and  Function  Directory.

Reference          8-1



Character Set

The  Amiga  Basic  character  set  is  composed  of  alphabetic,   numeric,   and
special    characters.       These    are   the   only   characters   that   Amiga   Basic
recognizes.     There   are   many   other   characters   that   can  be   displayed   or

printed,  but  they  have  no  special  meaning  to  Amiga  Basic.

The   Amiga   Basic   alphabetic   characters   include   all   the   uppercase   and
lowercase letters  of the  American  English  alphabet.   Numeric characters  are
the  digits  0  through  9.    The  following  list  shows  the  special  characters  that
are  recognized  by  Amiga  Basic.

Character

8-2         Reference

Name  or  Function

Blank
Equal  sign  or  assignment  symbol
Plus  sign
Minus  sign
Asterisk  or  multiplication  symbol
Slash  or  division  symbol
Up  arrow  or  exponential  symbol
Left  parenthesis
Right  parenthesis
Percent  sign
Number  (or  pound)  sign
Dollar  sign
Exclamation  point
Left  bracket
Right  bracket
Comma
Period  or  decimal  point
Single  quotation  mark  (apostrophe)
Semicolon
Colon
Ampersand
Question  mark

`-,

\-

`-



Character

RETURN

ERE

JRE

-

Name  or  Function

Less  than
Greater  than
Backslash  or  integer  division  symbol
At-sign
Underscore
Terminates  input  of  a  line
Double  quotation  mark

The  following  list  shows  the  Amiga-key  characters  that  are  used  in  Amiga
Basic.

Key  Combination

Amiga-period(.)

Amiga-S
Amiga-T
Amiga-C
Amiga-P
Amiga-X
Amiga-R
Amiga-L

Function

Interrupts program execution and returns to  Amiga
Basic  command  level
Suspends  program  execution.
Executes  the
Executes  the
Executes  the
Executes  the
Executes  the
Executes  the

The Amiga Basic Line

next  statement  of  the  program.
``Copy"   edit  function.
"Paste"   edit  function.
``Cut"   edit  function.
"Start"  run  function.
``Show"   List  window  function.

Amiga  Basic  program  lines  have  the  following  format:

[nn7m7t]    sfcz/eme7if   I :sfafemenf...]  [commenf]<RETURN>

Or

|alpha-mum-label .. ` statement 1 | .. statement 2 . .  . I |comment | <RETUEN>

Reference          8-3



The  nmnn  (which  specifies the line number)  must be  an integer between  0
and  65529.

The  ciJPAcz-nwmlc}be/ is  any  combination  of letters,  digits,  and  periods  that
starts  with  a  letter  and  is  followed  (with  no  intervening  spaces)  by  a  colon

(:).

A commenJ  is  a  non-executing statement  or  characters that  you  may put in

your  programs  to  help  clarify  the  program's  operation  and  purpose.

As  you  can  see,  Amiga  Basic  program  lines  can  begin  with  a  line  number,
an  alphanumeric  label,   neither,   or  both,   and  must  end  with  a  carriage
return.    A program  line  can  contain  a  maximum  of  255  characters.    More
than  one  Amiga  Basic statement can be placed on  a line,  but  each  must be
separated   from  the   last  by   a   colon.      Program   lines   are   entered   into   a
program by pressing the Return key.   This carriage return is an invisible part
of  the  line  format.

Line numbers and labels are pointers used to document the program  (make
it more  easily understood)  or to  redirect program  flow,  as  with the  GOSUB
statement.

If ,  for  example,  you  want  a  specific part  of  a  program  to  run  only  when  a
certain  condition  is  met,  you  could  write  the  following  program:

IF   Accounts<>"   THEN   GOSUB   Design

The  interpreter  searches  for  a  line  with  the  label  Design:  and  executes  the
subroutine  beginning  with  that  line.     Note  that  no   colon  is  needed  for
Design  in  the  GOSUB  statement.

Label Definitions

Alphanumeric   line   labels   can   contain   from    1   to   40   letters,   digits,   or

periods.   They  must begin  with  an  alphabetical  character.    This  allows  the
use of mnemonic labels to make your programs easier to read and maintain.

8-4         Reference

`-,

`-

`.J



For example, the following line numbers  and alphanumeric labels are valid:

Line  Numbers                 Alphanumeric  Labels

100                                           ALPHA:

65000                                          A16:

SCREEN.SUB:

Restrictions

i-'

--

`-

In    order    to     distinguish     alphanumeric    labels     from     variables,     each
alphanumeric  label  definition  must  have  a  colon  (:)  following  it.    A  legal
label  cannot  have  a  space  between  the  name  and  the  colon.     When  you
refer to  a  label  in  a  GOSUB  or  GOTO  or  other  control  statement,  do  not
include  the  colon  as  part  of  the  label  name.    You  cannot  use  any  Amiga
Basic  reserved  word  as  an  alphanumeric  label.

While   the   line   number   0   is   not   restricted   from   use   in   a   program,
error-trapping routines use  line  number  0  to  mean  that  error trapping is to
be  disabled.    Thus,

ON   ERROR   GOT0   0

does not branch to line number 0 if an error occurs.   Instead,  error trapping
is  disabled  by  this  statement.

Format

A  label,  a  line  number,  or  both  a  label  and  a  line  number  can  appear  on
any line.   The line number,  when present,  must always begin in the leftmost
column.    A  label  must  begin  with  the  first  non-blank  character  following
the  line  number   (if  present)   and  end  with  a  colon;   a  blank  cannot  exist
between  the  label  and  the  colon.

Reference         8-5



Alphanumeric  labels   and   line   numbers   can  be   intermixed   in   the   same

Program.

Constants

Constants  are the  actual values Amiga  Basic uses  during program  execution.
There  are two  types  of constants:  string and numeric.   A string constant is  a
sequence  of  alphanumeric  characters  enclosed  in  double  quotation  marks.
String  constants  may  be  up  to  32,767  characters  in  length.

Numeric constants  are positive  or negative numbers.   There  are five types  of
numeric  constants:

Short  Integer

Long  Integer

Fixed-point

Floating-point

Hex  constants

Octal  constants

8-6          Reference

Whole  numbers  between  -32768  and  +32767.
Short  integer  constants  do  not  contain  decimal

points .

Whole    numbers   between   -2147483648    and
2147483647.      Long   integer   constants   do   not
contain  decimal  points.

Positive    or    negative    real    numbers;    that    is,
number  constants  that  contain  decimal  points.

Positive   or   negative   numbers   represented   in
exponential       form       (similar      to       scientific
notation).   A floating-point constant consists of
an    optionally    signed    integer    or    fixed-point
number  (the  mantissa)  followed by  the  letter  E
and      an      optionally      signed      integer       (the
exponent).      (Double   precision   floating-point
constants  are  denoted by the letter D instead  of
E.)

Hexadecimal  numbers  with  the  prefix  &H.

Octal  numbers  with  the  prefix  &0  or  &.

`-

\-/

`-



-

-

-,

Fixed-point  and  floating-point  constants  can  be  either  single  precision  or
double-precision  numbers.    Single-precision  numeric  constants  are  stored
with  7  digits  of precision  (plus the  exponent)  and printed  with up to  7  digits
of   precision.       Double-precision   numbers   are   stored   with    16   digits   of

precision  and  printed  with  up  to  16  digits  of  precision.     (See  Appendix  D,
Internal  Representation  of  Numbers,  for  details  on  the  internal  format  of
numbers.    A single precision  constant is  any  numeric  constant that has  one
of  the  following  properties:

•      Seven  or  fewer  digits
•      Exponential  form  denoted  by  E
•      A  trailing  exclamation  point  (!)

A  double  precision  constant  is  any  numeric  constant  that  has  one  of  the
following  properties:

•      Eight  or  more  digits
•      Exponential  form  denoted  by  D
•      A  trailing  declaration  character  (#)

The  following  are  examples  of  numeric  constants:

Single  precision               Double  precision

46.8                                                  345692811
-1.09E-6                               -1.09432D-06

3489.0                                           3489.0#

22.5!                                                  7654321.1234

Numeric  constants  in  Amiga  Basic  cannot  contain  commas.

Reference          8-7



Variables

Variables  represent  values  that  are  used  in  a  program.    As  with  constants,
there  are  two  types  of  variables:  numeric  and  string.    A  numeric  variable
can only be assigned a value that is a number.   A string variable can only be
assigned  a  character  string value.   You  can  assign  a  value to  a variable,  or  it
can  be   assigned   as   the  result   of  calculations  in  the  program.     Before   a
variable  is  assigned  a  value,   its  value  is  zero   (numeric  variables)   or  null

(string  variables) .

Variable  Names

A  variable  name  can  contain  as  many  as  40  characters.     The  characters
allowed  in  a  variable  name  are  letters,   numbers,   and  the  decimal  point.
The   first  character   in   a   variable   name   must  be   a   letter.      Special  type
declaration  characters  are  also  allowed  (see  "Declaring  Variable  Types"  in
this  section).

Variable  names  are  not  case-sensitive.    That  means  that  variables  with  the
names  ALPHA,  alpha,  and  AIphA  are  the  same  variable.

If  a  variable  begins  with   FN,   Amiga  Basic  assumes   it  to  be   a   call  to   a
user-defined  function.     (See   "DEF  FN"   in  the   Statement  and  Function
Directory  that  follows  for  more  information  on  user-defined  functions.)

Reserved Words

Reserved words  are words that have special meaning in  Amiga  Basic.   They
include  the  names  of  all  Amiga  Basic  commands,   statements,   functions,
and   operators.      Examples   include   GOTO,   PRINT,   and  TAN.      Always
separate  reserved  words  from  data  or  other  elements  of  an  Amiga  Basic
statement  with  spaces.    Reserved  words  cannot be  used  as  variable  names.
Reserved   words   can   be   entered   in   either   uppercase   or   lowercase.      A
complete   list   of   reserved   words   is   given   in   Appendix   C,   "Amiga   Basic
Reserved  Words."

8-8          Reference

-

-

`-



`-

-

`u

While   a   variable   name   cannot   be   a   reserved   word,   a   reserved   word
embedded  in  a  variable  name  is  allowed.

Declaring Variable Types

Variable names  can be declared either as numeric values or as string values.
String  variable   names   can   be   written   with   a   dollar   sign   (S)   as   the   last
character.    For  example:

LET   AS   =    ''SALES   REPORT"

The  dollar sign is  a variable type  declaration  character;  that is,  it  "declares"
that  the  variable  will  represent  as  String.

You  can  assign  a  numeric  value  certain  properties  by  appending  a  trailing
declaration  character to  its  variable  name.    You  can  declare  the  value  to  be
a short integer  or a long integer  a with single-precision  or  double-precision
value.     Computations  with  double-precision  variables  are  more   accurate
than  single-precision  variables.    However,  double-precision  variables  take
up  more  memory  space  than  single-precision  precision  variables.

The  default  type  for  a  numeric  variable  is  single  precision.

The  trailing  declaration  characters  for  numeric  variables  and  the  memory
requirements  (in  bytes)  for  storing  each  variable  type  are  as  follows:

SHORT  Integer                 2
LONG  Integer                    4
Single  precision                  4
Double  precision               8
String                                      5  bytes  plus  the  contents  of  the

string.

Instead   of   using   the   trailing   declaration   characters,    you    can   include
DEFINT,  DEFLNG,  DEFSTR,  DEFDBL,             and  DEFSNG    statements
in  a  program  to  relate  the  starting  letter  of  a  variable  name  to  a  variable
type.    Each  time  you  declare  a  variable  name  beginning with  the  specified
letter,  Amiga  Basic  assumes the  variable type  you  specified  in the  DEFfype

Reference         8-9



statement.    (These statements  are  described in the  DEFINT section  later  in
this  chapter.)

Array Variables

An  array  is   a   group   of  values   of  the   same   type,   referenced  by   a  single
variable name.   The  individual values in an array are  called elements.  Array
elements   are   variables   also.      They   can   be   used   in   any   Amiga   Basic
statement  or  function  that  uses  variables.    Declaring  the  name  and  type  of
an   array   and   setting  the   number  of  elements   in  the   array   is   known   as
dimensioning  the  a.Tray.

Each   element   in   an   array   is   referenced   by   an   array   variable   that   is
subscripted  with   an  integer  or  an  integer  expression.     An   array  variable
name  has  as  many  subscripts  as  there  are  dimensions  in  the  array.     For
example,  V(10)  would  reference  a  value  in  a  one-dimension  array,  T(1,4)
would reference a value in a two-dimension array,  and so on.   Note that the
array  variable  T(n)  and  the  "simple"  variable  T  are  not  the  same  variable.
The  maximum  number  of  dimensions  for  an  array  is  255.    The  maximum
number  of  elements  per  dimension  is  32,768.

Individual  elements  of  string  arrays  need  not  be  the  same  length.

Array   elements,    like   numeric   variables,    require   a   certain   amount   of
memory space,  depending on the variable type.   The  memory requirements
for  storing  arrays  are  the  same  as  for  variables,  each  element  of  the  array
requiring  as  much  as  the  same  type  variable.

Type  Conversion

When  necessary,   Amiga  Basic  will  convert  a  numeric  constant  from  one
type  to  another.    Keep  the  following  rules  in  mind.

If  a  numeric  constant  of  one  type  is  assigned  to  a  numeric  variat)le  of  a
different  type,  the  numeric  constant  is  stored  as  the  type  declared  in  the

8-10          Reference

`.-

`-

`-



`-

EE

`-

variable  name.     (If  a  string  variable  is  assigned  to  a  numeric  value  or  vice
versa,  a  "Type  mismatch"  error  message  is  generated.)

During   expression   evaluation,   all   of   the   operands   in   an   arithmetic   or
relational  operation  are  converted  to  the  same  degree  of  precision;  that  is,
the  degree  of  the  most  precise  operand.    Also,  the  result  of  an  arithmetic
operation  is  returned  to  this  degree  of  precision.

Logical  operators  convert  their  operands  to  integers  and  return  an  integer
result.    The  operand  must be  in  the  range  applicable  to  the  short  integer  or
long  integer  specified.

When   a   floating-point   value   is   converted   to   an   integer,   the   fractional

portion  is  rounded.

Expressions  and Operators

An    expression    is    a    combination    of    constants,    variables,    and    other
expressions  with  operators.    Expressions  are  ``evaluated"  by  the  interpreter
to  produce  a  string  or  numeric  value.    Operators  perform  mathematical  or
logical  operations  on  values.    The  operators  provided  by  Amiga  Basic  can
be  divided  into  four  categories:

Hierarchy  of Operations

The  Amiga  Basic  operators  have  an  order  of  precedence;   that  is,   when
several  operations  take  place  within  the  same  program  statement,  certain
operations  are  executed  before  others.     If  the  operations  are  of  the  same
level,  the  leftmost one  is  executed first,  the  rightmost last.   The  following is
the  order  in  which  operations  are  executed:

Reference          8-11



1.     Exponentiation
2.     Unary  Negation
3.     Multiplication  and  Floating-point  Division
4.     Integer  Division
5.    Modulo  Arithmetic
6.    Addition  and  Subtraction
7,     Relational  Operators
8.     NOT
9.    AND
10.  OR    and  XOR
11.  EQV

12.  IMP

Arithmetic  Operators

The  Amiga  Basic  arithmetic  operators  are  listed  in  the  following  table  in
order  of  operational  precedence:

Operator

*,/

\
MOD
+,-

Operation

Exponentiation
Unary  Negation
Multiplication
Floating  point  Division
Integer  Division
Modulo  Arithmetic
Addition,  Subtraction

Sample  Expression

X^Y
-X
X*Y

X/Y
X\Y
Y  MOD  Z
X+Y,  X-Y

To    change    the    order    in    which    the    operations    are    performed,    use

parentheses.     Operations  within  parentheses  are  performed  first.     Inside
parentheses,  the  usual  order  of  operation  is  maintained.

Amiga   Basic   expressions   look   somewhat   different   from   their   algebraic
equivalents.    Here  are  some  sample  algebraic  expressions  and  their  Amiga
Basic  counterparts:

8-12          Reference

-

`-

`-



AIgebraic  Expression

X-Z
Y

XY
Z

X+Y
Z

(x2)Y

xyz

X(-Y)

-

-

`-

Amiga  Basic  Expresssion

(X  -  Z)  /  Y

X *  I  /  Z`

(X  +  Y)  /  Z

(X^2)^Y

X^(Y^Z)

X ` (-Y)

Integer Division

Integer  division is  denoted by the backslash  (\)  instead  of the  slash  (/) ;  the
slash  indicates  floating-point  division.   The  operands  of integer  division  are
rounded  to  integers  (for  short  integers,  in  the  range  -32768  to  +32767  and
for  long  integers,  from  -2147483648  to  2147483647)  before  the  division  is

performed,  and  the  quotient  is  truncated  to  an  integer.

For  example:

X=10/4
Y=25 .  68\6 . 99

PRINT   X,Y

23

Modulo  Arithmetic

Modulo  arithmetic  is  denoted  by  the  operator  MOD.     Modulo  arithmetic

provides  the  integer  remainder  of  an  integer  division.

Reference          8-13



For  example:

10.4   MOD   4=2                              (10\4=2   wit,h   a   remainder   of   2)
25.68   MOD   6.99=5                    (26\7=3   with   a   remainder   of   5)

Note  that  Amiga  Basic  rounds  both the  divisor  and  the  dividend  to  integers
for  the  MOD  operation,

Overflow  and  Division  by  Zero

If  a  division  by  zero  is  encountered  during the  evaluation  of  an  expression,
the   "Division  by  zero"   error  message   is   also   displayed,   machine   infinity

(the   highest   number   Amiga   Basic   can   produce)   with   the   sign   of   the
numerator is supplied as the  result  of the  division,  and  execution  continues.
If  the   evaluation   of  an   exponentiation   results   in   zero   being   raised  to   a
negative  power,  the  "Division  by  zero"  error  message  is  displayed,  positive
machine   infinity   is   supplied   as   the   result   of   the   exponentiation,    and
execution  continues.    If  overflow  occurs,  the  "Overflow"  error  message  is
displayed,   plus   or   minus   infinity   is   supplied   as   a   result,   and   execution
continues.

Relational  Operators

Relational  operators  are  used  to  compare  two  values.     The  result  of  the
comparison  is  either  "true"   (-1)   or   "false"(0).     This  result  can  then  be
used  to  make   a  decision   regarding  program   flow   (see   the   "IF...THEN"
statement    in  the  Statement  and  Function  Directory).    The  following table
lists  the  relational  operators:

Operator        Relation  Tested

8-14 Reference

Equality
Inequality
Less  than
Greater  than
Greater  than  or  equal  to
Less  than  or  equal  to

Expression

X=Y
X<>Y
X<Y
X>Y
X<=Y
X>=Y

\-,

ERR

`-



-, (The  equal  sign  is  also  used  to  assign  a  value  to  a  variable.    See  "LET"  in
the   Statement  and  Function   Directory.)   When   arithmetic   and   relational
operators   are   combined   in   one   expression,   the   arithmetic   operation   is
always  performed  first.

Logical  Operators

Logical  operators perform bit  manipulation,  Boolean  operations,  or tests  on
multiple  relations.    Like  relational  operators,logical  operators  can  be  used
to  make  decisions  regarding  program  flow.

A   logical   operator   returns   a   result   from   the   combination   of   true-false
operands.    The  result  (in  bits)  is  either    "true"   (-1)  or    "false"   (0).    The
true-false  combinations  and  the  results  of  a  logical  operation  are  known  as
frufh  fc}bJes.     There  are  six  logical  operators  in  Amiga  Basic.     They  are:
NOT   (logical  complement),   AND   (conjunction),   OR   (disjunction).   XOR

(exclusive  or),  IMP  (implication),  and  EQV  (equivalence).    Each  operator
returns  results  as  indicated  in  the  following  table.    A  "T"  indicates  a  true
value  and  an  "F"  indicates  a  false  value.    Operators  are  listed  in  order  of
operational  precedence.

Operation

NOT

AND

Value            Value            Result

XORY
T
T
T
F

Reference          8-15



Operation

XOR

IMP

EQV X  EQV  Y
T
F
F
T

In   an   expression,   logical   operations   are   performed   after   arithmetic   and
relational  operations.    Logical  operators  convert  their  operands  to   16-bit,
signed,   two's   complement   integers   in   the   range   applicable   to   the   long
integer  or  short  integer  specified.

If both  operands  are  supplied  as  0  or  -1,  logical  operators  return  0  or  -1,
respectively.    The  given  operation  is  performed  on  these  integers  in  bits;
that is,  each  bit  of the  result  is  determined by  the  corresponding bits  in  the
two operands.   Thus,  it  is  possible to use  logical  operators to test bytes  for  a

particular  bit  pattern.     For  instance,   the  AND   operator   can  be  used  to
"mask"  all  but  one  of  the  bits  of  a  status  byte.    The  OR  operator  can  be

used   to   "merge"   two   bytes   to   create   a   particular   binary   value.      The
following  examples  illustrate  how  the  logical  operators  work:

8-16          Reference

ERE

`-



63  AND   16  =  16

15  AND   14  =  14

-1  AND  8  =  8

4  0R  2  =  6

-1  0R -2  = -1

NOT  X  =  -(X+1)

I-

-

63  = binary  111111  and  16  = binary  100000,  so  63
AND   16  =  16.

15  = binary  1111  and  14 = binary  1110,  so  15  AND
14  =   14   (binary   1110).

-1  =  binary   1111111111111111   and   8  =  binary

0000,  so  -1  AND  8  =  8.

4  =  binary  100  and  2  =  binary  10,  so  4  0R  2  =  6

(binary   110).

-1  =  binary   1111111111111111     and  -2  =  binary

1111111111111110,  so  -10R -2 = -1.  The binary
complement  of  16  zeroes  is  sixteen  ones,  which  is
the  two's  complement  representation  of  -1.

The  two's  complement  of  any  integer  is  the  bit
complement  plus  one.

Functions  and  Functional  Operators

When   a   function   is   used   in   an   expression,    it   calls   a   predetermined
operation  that  is  to  be  performed  on  its  operands.     Amiga  Basic  has  two
types  of functions:    "intrinsic"  functions,  such  as  SQR  (square  root)  or  SIN

(sine)   which   reside   in  the   system,   and   user-defined   functions   that   are
written  by  the  programmer.

See    the    Statement    and    Function    Directory    for    exact    description    of
individual  intrinsic  functions  and  "DEF  FN''.

Using  Operators with Strings

A  string  expression  consists  of  string  constants,  string  variables,   and  other
string   expressions   combined   by   operators.      There   are   three   classes   of
operations  with  strings:  concatenation,  relational,  and  functional.

Reference          8-17



Concatenation

Combining  two  strings  together  is  called  concatenation.    The  plus  symbol
(+)  is  the  concatenation  operator.    Here  is  an  example  of  the  use  of  the
operator:

LET   AS   =    "F`ile"    :    LET   BS   =    ''namo"
PRINT   AS   +   BS
PRINT    "New    "    +   AS   +   BS
END

These  statements  display  the  following  on  the  screen:

Filename
New   F`ilename

This example combines the string variables AS  and BS to produce the value
" Filename . "

Relational  Operators

Strings  can  also  be  compared  using the  same  relational  operators  that  are
used  with  numbers:

=<><><+>=

Using  operators  with  strings  is  similar  to  using  them  with  numbers,  except
that    the    operands    are    strings    rather    than    numeric    values.        String
comparisons  are  made  by  taking  one  character  at  a  time  from  each  string
and comparing the  ASCII codes.   The ASCII code system assigns  a number
value  to  each  character  produced  by  the  computer.     (See  Appendix  A,
"ASCII  Character  Codes.")       If  all  the  ASCII  codes  are  the   same,   the

strings   are   equal.      If   the   ASCII   codes   differ,   the   lower   code   number

precedes  the  higher.    If  during  string  comparison  the  end  of  one  string  is
reached,  the  shorter  string  is  said  to  be  smaller  if  they  are  equal  to  that

point.    Leading  and  trailing blanks  are  significant.

Here  are  some  examples  of  true  expressions:

8-18          Reference

`-

`.-



IRE

`.-

EE

„AA„    <     „88„

"FILENAME"    =    ''FILENAME"
"X&„     >     „X#„

„CL     „     >     llcL„

"k8"    =    "KG"
"SMYTH"    <     "SMYTHE"

Thus,  string comparisons  can be  used to  test  string values  or  to  alphabetize
Strings.      All   string   constants   used   in   comparison   expressions   must   be
enclosed  in  quotation  marks.

Statement and Function Directory

Headings

Amiga  Basic  is  a  powerful  programming  language  with  over  one  hundred
thirty  statements  and  functions.    These  are  presented  in  alphabetical  order
and  are  described  as  follows:

Syntax

Action

Remarks

See  also

Shows   the   correct   syntax   for  the   statement   or   function.
There  are  two  kinds  of  syntaxes:   one  for  statements  and
one   for   functions.       All   functions   return   a   value   of   a

particular type  and  can be used wherever  an  expression  can
be used.   Unlike  functions,  statements can appear  alone  on
an  Amiga  Basic  program  line  or  they   can  be   entered  in
immediate  mode  where  they  are  considered  commands.

Summarizes  what  the  statement  or  function  does.

Describes   arguments   and   options   in   detail,   and   explains
how  to  use  the  statement  or  function.

Cross-references   to   related   statements    and   functions.
Optional  section.

Reference          8-19



Examples

Note

Warning

Gives sample commands,  programs,  and program  segments
that  illustrate  the  use  of  the  given  statement  or  function.
Optional  section.

Points    out   an   important   caveat   or   feature.        Optional
section.

Alerts  the  user  to  problems  or  dangers  associated  with  use
of  the  given  statement  or  function.    Optional  section.

The  following  syntax  notation  is  used  in  this  section:

CAPS                     Items  in  capital  letters  must  be  input  as  shown.

i.fcz/i.cs.                       Items  in  italics  are  to  be  supplied  by  the  user.

[  ]                             Items  inside  square  brackets  are  optional.

Items  followed  by  ellipses  may  be  repeated  any  number  of
times.

{  }                             Braces  indicate  that  the  user  has  a  choice  between  two  or
more  items.    One  of these  items  must be  chosen unless the
entries  are  also  enclosed  in  square  brackets.

I                                 Vertical    bars    separate    tbe    items    enclosed    in    braces
discussed  above.

All punctuation including commas,  parentheses,  semicolons,  hyphens,  and
equal  signs  must  be  included  where  shown.

8-20         Reference

-

EE

-



Returns  the  absolute  value  of  the  expression  X.

ABS

AREA

EE'

EBB

`-

AB S ( X )

Example:

The  following  example  shows  the  results  ABS  returns  for  a  positive  and  a
negative  number.

LET   X   =    987    :    LET   Y   =   -987
PRINT   ABS     (X),     ABS(Y)

The  results  displayed  on  the  screen  are  as  follows:

987       987

A;REA   [STEP] (X,Y)

Defines  a point  of a polygon  to  be  drawn  with  the  AREAFILL statement.

The  parameters  I  and y  specify  one  of  many  points  that  Amiga  Basic  is  to
connect   in   forming   a   polygon   with   an   AREAFILL   statement.       The
AREAFILL  statement  ignores  all  AREA  statements  in  excess  of  20.

If  STEP  is  included,  x  and  y    are  offsets  from  the  current  graphics  pen
position.    Otherwise,  they  are  absolute  values  specifying  a  location  in  the
current  window.

See  also:    AREAFILL

AREAFILL AREAFILL       [mode]

Alters  the  interior  of  a  polygon  defined  by  two  or  more  preceding  AREA
statements .

Reference          8-21



The  mode parameter  determines  the  format  of the  polygon  as  shown  in the
following  table.

0                       Fills    the    area    with    the    area    pattern    established    by    the
PATTERN  statement.    This  is  the   default  mode.

1                        Inverts  the  area.

Example,

The  following  statements  draw  a  triangle  and  fill  its  interior:

AREA    (10,10)

AREA    STEP    (0,40)
AREA   STEP    (40,-40)
AREAFILL

See  also:    AREA,  PATTERN,  and  COLOR

ASC

8-22

ASC ( XS )

Returns  a  numerical  value  that  is  the  ASCII  code  for  the  first  character  of
the  string  XS.

The   Amiga   Basic   character   set   includes   the   entire   ASCII   set,   but   also
contains  additional characters.   These  non-ASCII  characters,  as  well  as the
standard   ASCII   characters,   may  be   tested   with  the   ASC   function   (see
Appendix  A,  "ASCII  Character  Codes").

See  also:     CHRS

Example:

The  following  demonstrates  the  use  of  the  ASC  function:

Reference

\-

`-

`-



ATN

ERE

-,

`-

LET   OBJECTS   =    ''T"
PRINT   ASC(OBJECTS)
END

This  statement  prints  out  the  following  value:

84

ATN ( X )

Returns  the  arc  tangent  of  X,  where  X  is  in  radians.    The  result  is  in  the
range  -pi/2  to  pi/2  radians.

The  evaluation  of  this  function  is  performed  in  single  precision  when  the
argument  is  in  single  precision  and  in  double  precision  when  the  argument
is  in  double  precision.

Examples:

In the  following example,  ATN is  used in  a program that converts numbers
to  their  respective  arc  tangents.

'Arct,angent,   request   program
newnumber :
INPUT    "Enter   a   number    ",    NUMBER
PRINT    ''Arc    tangent    of    "       NUMBER    "    is    "    ATN(NUMBER)
INPUT   "If   you  have   another   number,   enter   y   ",   ¥ORNS
IF   YORNS   =    "y"   GOT0   newnumber
END

The  following  example  shows  the  results  produced  by  this  program:

Enter  a  number   33
Arc   tangent,   of   33      is      1.540503
If  you  have   another  number,   enter  y  y
Enter   a  number   2
Arc   t,angent   of      2      is      1.107149
If  you  have   another  number,   ent,er  y  n

Reference          8-23



BEEP BEEF

Sounds  the  speaker  and  flashes  the  display.

The  BEEP  statement  causes  a  momentary  sound.    The  statement  is  useful
for  alerting the  user.

Example:

IF   MemLeft&   <   loo   THEN
BEEP
LOCATE    17,1
PRINT    "OUT   0F   MEMORY:    decrease   picture   size";

END   IF

BREAK  ON                                                                                                                BREAK  ON
BREAK  OFF                                                                                                        BREAK  OFF
BREAK  STOP                                                                                                    BREAK  STOP

Enables,  disables,  or  suspends  event  trapping  based  on  the  user  trying  to
stop  program  execution.

The  BREAK  ON  statement  enables  event  trapping  of user  attempts  to  halt
the program  (by pressing Amiga-period  or  selecting the  Stop  option  on  the
Run  menu) .

The  BREAK  OFF  statement  disables  ON  BREAK  event  trapping.     Event
trapping  stops  until  a  subsequent  BREAK  ON  statement  is  executed.    The
BREAK  STOP  statement  suspends  BREAK  event trapping.    Event  trapping
continues,  but  Amiga  Basic  does  not  execute  the   ON  BREAK...GOSUB
statement   for   an   event   until   a   subsequent   BREAK   ON   statement   is
executed.

See  also:    ON  BREAK

8-24          Reference

`-

EE

`-



`-J

iEE]

CALL

Example:

This  program  fragment  illustrates  the  use  of  ON  BREAK.

BREAK   0N
0N   BREAK   GOSUB   DIRECTUSER

D"   PAYTIME (99)  , IIRS (99)  , GROSS (99)  , FIT (98)  , FICA (99)  . STATE (99)  , NET (99)

LET   TOTALEMPLOYEES    =    99
OPEN    "0",#1,  "Employeepay"

FOR   1=1    TO   TOTALEMPLOYEES

WRITE#1, PAYTIME (I )  , HRS (I )  , GROSS (I )  , FIT (I )  . FICA (I )  , STATE (I )  . NET (I )
NEXT    I

CLOSE    #1     :BREAK   0FF`
INPUT    "Do   you   wish   to   print   the   payroll   now    (Y/N)?",    ANSWERS
IF    ANSWERS   =    "Y"    THEN   BREAK   0N:     GOSUB    PRINTCHECKS

END

DI RE CTUSER :

CLS:BEEP:PRINT   "You   can't   exit   program   until   file   is   updated."
RETURN

CALL na,me    [(argument-list)]
name     [argument  -list]

(1)  Calls  an  Amiga  Basic subprogram  as  defined by the  SUB  statement;  (2)
calls  a  machine  language  routine  at  a  fixed  address;  or  (3)  calls  a  machine
language  LIBRARY  routine.

The   CALL   keyword   optional.       If   CALL   is   omitted,   the   parentheses
surrounding  czrgctmer!f-/!.sf  are  also  omitted.

Calling  Amiga  Basic  Subprograms  Defined  by  the  SUB  Statement

You  can  call  subprograms  using  the  SUB  statement.    Variables  are  passed
by  reference.    Expressions  are  passed  by  value.

For  example,

SUB   ALPHA    (x,y)     STATIC
END    SUB

CALL   ALPHA    (a,b)

Reference          8-25



See  the   SUB  statement  in  this   chapter  and  also  in   Chapter   6   for  more
information  on  calling  subprograms.

Calling  Machine  Language  Subprograms

The CALL statement is the only way to transfer program flow to  an external
subroutine.   The  name identifies  a simple  variable that  contains  an  address
that is the starting point in memory of the  subroutine.   The name  cannot be
an  array  element.

The  argument list contains the  arguments  that  are passed to the  subroutine.
Parameters   are   passed   by   value   using   the   standard   C-language   calling
conventions.      All   parameters   must   be   short   integer   or   long   integer,   or
Amiga Basic issues  a  "Type mismatch"  message.   The  address  of a  single  or
double  precision  variable  can  be  passed  as  follows:

CALL   Routine(VARPTR(x)  )

The  address  of  a  string  can  be  passed  as  follows:

CALL   Rout,ine(SADD(xS) )

In the following example,  the variable  that holds the  address  of the  routine
is  a  short integer  (&).    (Use  a long integer if the  address  length  is  24  bits;  a
short  integer  or  a  single-precision  number  can't  hold  a  24-bit  address.)

a=O:    b=O
D"   Code%(loo)
FOR   1=0   TO   90
READ   Code%(I)
NEXT    I
CodeAdr&   =   VARPTR(Code%(O) )
CALL   CodeAdr&(a,b)

Calling  a  Machine  Language  Subroutine  fl.om  a  LIBRARY

Library  routines  are  machine  language  routines  that  are  bound  to  Amiga
Basic  dynamically  at  runtime.

8-2 6         Reference

`-

`-

EE



-'

`--

EE|

Library  files  are  special  Amiga  resource  files,

Parameters  are  passed  by  value  using  standard  C-language  conventions.

Example:

LIBRARY   "graphics. library"
CALL   Draw(50,60)

In the  above example,  Amiga  Basic creates a  variable by the  name  of Draw.
It then stores information  about where the machine language  routine  resides
in  this  variable.    For  this  reason,  the  variable  cannot  be  an  integer.

For  example,  the  following  call  would  generate  a  "Type  mismatch"  error

DEFINT   A-Z
CALL   Draw(50,60)

but  the  following  call  would  be  acceptable:

DEFINT   A-Z
CALL   Draw# (50 , 60)

Note   that   Amiga    Basic   ignores   the   trailing   declaration   character    (#)
following the routine name when searching the libraries for the  routine.    So,
in  the  above  example,  it  would  search  for  ``Draw,"  and  not  "Draw#."

Warning

Because the word  CALL can be  omitted,  a  CALL can be  executed  with the
Syntax

name  argument-list

Such  a  CALL  statement  may  resemble  an  alphanumeric  label.

Consider  the  statement

Reference          8-27



ALPHA:    Let   A   =   5

It is not visually clear whether the  statement is calling a  subprogram named
ALPHA with no  argument list,  or the statement LET A = 5  is  on a line with
the  label  ALPHA:.    In  such  a  case,  ALPHA:  is  assumed  to  be  a  line  label
and  not  a  subprogram  call  with  no  arguments.

After   a  THEN  or   ELSE  keyword,   CALL   is   required  to   distinguish  the
identifier  from  a  label.

Converts  X  to  a  double-precision  number.

CDBL CDBL(X)

Example,

The  following example  shows  the  product  of two  single-precision  numbers
displayed  in  single-precision,  and  then  converted  to  double  precision  and
displayed.

A!    =    6666     :    8!     =    100000!
PRINT   A!*B!  ,    "(I`esult,   printed   in   single   precision)  "
PRINT   CDBL(A!*B!),    "(result   pl`inted   in   double   precision)"

The  following  is  displayed  on  the  screen:

6.66E+08             (result   pl.inted   in   single   precision)
666600oo             (result   printed   in   double   precision)

CHAIN          CHAIN  [MERGE]  /;.Jespec[, [expressl.on] [,[ALL] [,DELETE  rcznge]]]

Executes   another   program   and   passes   variables   to   it   from   the   current

Program.

The /I.Jespec  is  the  specification  of  the  program  that  is  called.

8-2 8          Reference

`-

`-

`--



`-

`-

I-

Note

The  eJtpress!.on  is  a  line  number,  or  an  expression  that  evaluates  to  a  legal
line number,  in the called program.   It is the  starting point for execution of
the  called program.    If it  is  omitted,  execution begins  at the  first  line.    An
alphanumeric  label  cannot  be  used  as  a  starting point.

The  MERGE option allows a subroutine to be brought into the Amiga Basic

program as an overlay.   That is,  the current program and the called program
are  merged,  with  the  called  program  being  appended  to  the  end  of  the
calling  program.    The  called  program  must  be  an  ASCII  file  if  it  is  to  be
merged.

With  the  ALL option,  every  variable,  except  variables  which  are  local  to  a
subprogram in the  current program,  is passed to the  called program.   If the
ALL  option  is  omitted,   the  current  program  must  contain  a  COMMON
statement  to  list  the  variables  that  are  passed.

If the ALL option is used and the  express!.o„  is not,  a comma must hold the

place  of  the  express!.on.

CHAIN  leaves  files  opened.

After  an  overlay  is  used,  it  is  usually  desirable  to  delete  it  so  that  a  new
overlay  may  be  brought  in.    To  do  this,  use  the  DELETE  option.

The   CHAIN   statement   with   the   MERGE   option   preserves   the   current
OPTION  BASE  setting.

If the MERGE option is omitted,CHAIN does not preserve variable types  or
user-defined   functions   for  use   by   the   chained   program.      That   is,   any
DEFINT,     DEFLNG,     DEFSNG,     DEFSTR,     DEFDBL,     or     DEF    FN
Statements  must  be  restated  in  the  chained  program.    Also,  CHAIN  turns
off all event trapping.   If event trapping is  still desired,  each event trap  must
be  turned  on  again  after  the  chain  has  executed.

When  using  the  MERGE  option,  user-defined  functions  should  be  placed
before   the      rcz7tge   deleted   by   the   CHAIN   statement   in   the   program.

Reference          8-29



Otherwise,   the   user-defined   functions   are  undefined   after  the   merge   is
complete.

The  DELETE    j-cznge  consists  of  a  line  number  or  label,   a  hyphen,   and
another line  number  or label.   All the  lines between the two  specified lines,
inclusive,  are  deleted  from  the  program  chained  from.

See  also:    COMMON,  MERGE

Example:

This  program  illustrates the  use  of the  CHAIN and  COMMON statements.

COMMON    ACCT,BALANCE!  ,CHARGES(     )  ,     DISCOUNT!  ,     CONTACTS

CHAIN   "Receivables"

CHRS

8-30

CHRS(I)

Returns  a  string  whose  one  character  has  the  ASCII  value  given  by  I   (see
Appendix  A,   "ASCII  Character  Codes").

CHRS   is  commonly  used  to  send  a  special   character  to  the   screen  or  a
device.   For instance,  the  ASCII  code  for the bell  character  (CHRS(7))  can
be printed to cause the same effect as the BEEP statement,  or the form feed
character  (CHRS(12))  can  be  sent  to  clear  the  Output  window  and  return
the  pointer  to  the  home  position.

Example:

In the following example,  CHRS  converts  the  ASCII  codes  65  through  90 to
their  respective  ASCII  character  representation.

CLS
FOR   I    =    65   TO   90
PRINT    CHRS(I)  ;     SPC(1)

NEXT    I

Reference

RE

-/

`-



CINT

`-

-

The  following  is  displayed  on  the  screen:

A   8    C   D   E   F`   a   H   I    J   K   L   M   N   0   P   Q   R   S   T   U   V   W   X   Y    Z

CINT(X)

Converts  X  to  an  integer  by  rounding  the  fractional  portion.

If  X  is  not  in  the  range  -32768  to  32767,  an  "Overflow"  error  message  is

generated.     Related  to   CINT  are  the   CDBL  and   CSNG  functions  which
convert  numbers  to  the  double  precision  and  single  precision  data  types,
respectively.

Example:

The   following   example   displays   three   non-integer   numbers,   and   then
displays  each  number  after  conversion  with  CINT.

PRINT   CINT(-3.5)
PRINT   CINT(-3.2)
FOR   I    =    1   TO   3
X    =   RND*10
PRINT   X,    ''=   random   number   generated   by   RND,    t,imes   10"
PRINT   CINT(X)  ,    ''=   int.eger   portion   of   the   same   number"
NEXT    I

The  following  is  displayed  on  the  screen:

-4
-3
1.213501              =   random   number   generated   by   RND,    t,imes   10
1                              =   integer  port,ion   of  the   same   number
6.518611              =   random   number   generated   by   RND,    times   10
6                             =   integer  portion  of  the   same  number
8.686811              =   random   number   generat,ed   by   RND,    times   10
9                             =   integer  portion  of  the   same  number

See  also:    CLNG,  CDBL,  CSNG,  FIX,  INT

Reference          8-31



CHDIR CHDIR sfr!.ng

Changes  the  current  directory.

The  sfr!.ng  is  an  expression  that  identifies  the  new  directory  that  becomes
the  current  directory.

Example:

CHDIR   "dfl:"        '   Change   to   the   current   direct,ory   on  Device   1
CHDIR   "dfo:c"       '   Change   t,o   Directory   C   on   Device   0
CHDIR   "/"                '   Change   t.o   parent   directory

CIRCLE                     CIRCLE   [STEP] (;¥,y/,rczd!.us     [,coJor-j.d   [,sfczrc,end   [,c}fpecf]]]

Draws  a  circle  or  an  ellipse  with  the  specified  center  and  radius.

The  x  parameter  is  the  x  coordinate  for  the  center  of  the  circle.

The  y  parameter  is  the  y  coordinate  for  the  center  of  the  circle.

The   STEP  option   indicates   the  x   and   y   coordinates   are  relative  to   the
current  coordinates  of  the  pen.     For  example,   if  the  most  recent  point
referenced  were   (10,10),   CIRCLE  STEP(20,15)   would  reference  a  point
offset  20  from  the  pen's  current  x  location  and  offset   15  from  the  pen's
current  y  location.

The  rczcJj.ws  is  the  radius  of  the  circle  in  pixels.    The  cozor-{.d    specifies  the
color to be used;    it  corresponds  to  the  co/or-j.d  in  a  PALETTE  statement.
The   default  color  is  the  current  foreground  color  as   set  by  the   COLOR
statement.

The sfc!rf  and  encz  parameters  are  the  start  and  end  angles  in  radians.    The
range  is  -2*(Pi)   through  2*(Pi).     These  angles  allow  the  user  to  specify
where   a   circle   or   ellipse  begins   and   ends.     If  the   start   or  end   angle   is
negative,  the  circle  or  ellipse  is  connected  to  the  center  point  with  a  line,

8-32          Reference

ERE

`-

`-



-

ii=Ezi

`-

and  the  angles  are  treated  as  if they  were  positive.    The  start  angle  may  be
less  than  the  end  angle.

The c}specf is the  aspect ratio,  which is the ratio of the width to the height of
one  pixel.     The  aspect  ratio  used  by  manufacturers  of  monitors  varies.
CIRCLE  draws  a  perfect  circle  if  c2specf    is  set  to  the  aspect  ratio  of  the
monitor;  otherwise,   CIRCLE  draws  an  ellipse.

The  aspect ratio for the  standard Amiga  monitor  (using high  resolution  and
the  640  by  200  screen)  is  2.25:1  or  approximately  .44   (1/2.25),   which  is
the  default for czspecf .   If you  specify  .44  for czspecf,  or  omit  a  specification,
a  perfect  circle  is  drawn  on  the  Amiga  monitor.

Example:

CIRCLE    (60,60),55

The  above  example  draws  a  circle  with  a  radius  of  55  pixels;  the  center  of
the  circle  is  located  at  x  coordinate  60  and  y  coordinate  60.

ASPECT    =     .1
WHILE   ASPECT<20

CIRCLE (60 , 80)  , 55 , 0 ,  ,  , ASPECT
ASPECT   +   ASPECT*l.4

WEND

`Initialize  aspect  ratio

'Draw  an  ellipse
'Change   aspect   ratio

The  above  example  draws  a series of ellipses of varying aspect ratios.   The  0

parameter  specifies the  color;  here,  the  Amiga  system background  color  of
blue  would  apply  unless  overridden  by  a  PALETTE    statement.

CLEAR CLEAR   /,bc2sl.cDc2fcz]    [,sfczck]

Sets  all  numeric variables to  zero  and  all  string variables to  ''''  and  allocates
memory  to  the  Amiga  Basic  data  area  and  to  the  system  stack.    Closes  all
files  and resets  all  DEF FN,  DEFINT,  DEFLNG,  DEFSNG,  DEFDBL,  and
DEFSTR  statements.

Reference          8-33



bas!.cDc}fcz  is  a  numeric  expression  that  specifies  the  amount  of  memory  to
be  allocated  to  Amiga  Basic  program  text,  variables,   string,   and  file  data
blocks;   the   numeric   expression   must  be   1024   bytes   or   greater.      If  this

parameter  is  omitted,  Amiga  Basic  allocates  the  current  value.

sfczck  is  a  numeric  expression  that  specifies  the  amount  of  memory  to  be
allocated to the system stack; the numeric expression must be  1024 bytes  or

greater.     If  this  parameter  is    omitted,   Amiga  Basic  allocates  the  current
value.

See  also:    FRE

Examples:

CLEAR
CLEAR,    20000
CLEAR,    2000
CLEAR , 20000 , 2000

CLOSE

8-34

CLOSE   [[#]/!.je„wmber[, [#]/!./enwmbcr  ...]]

Concludes  I/0  to  a  file.     The  CLOSE  statement  complements  the  OPEN
statement.

The /!.Jenumber  is  the  number  with  which  the  file  was  opened.    A  CLOSE
with   no   arguments   closes   all   open   files.       The   association   between   a

particular  file  and  the /!./e"wmber  terminates  upon  execution  of  a  CLOSE
statement.    The  file  may  then  be  reopened  using  the  same  or  a  different
/!.Jenumber;  likewise,  that /!./enwmber  can  be  reused  to  open  any  file.

A CLOSE for a sequential output file writes the final buffer of output.  When
Amiga  Basic  performs  sequential  file  I/0,  it  uses  a  holding  area,  called  a
buffer,  to  build  a  worthwhile  load before  transferring  data.    If the  buffer  is
not   yet   full,    the    CLOSE    statement    assures   that   the   partial    load    is
transferred.

Reference

EJE

-



`-

-

The   END,   SYSTEM,   CLEAR,   and   RESET   statements   and   the   NEW
command  always  close  all  disk  files  automatically.     (STOP  does  not  close
disk  files.)

See  also:    CLEAR,  END,  NEW,  OPEN,  RESET,  STOP,  SYSTEM

Example:

This  is  a fragment of a program that opens  an existing file,  gets  data from it,
updates  it,  and  returns  it.

OPEN    "Payables"   AS   #Z   LEN   =   80
FIELD    #2,     30   AS   FIRMS,     30   AS   ADDRS,     10   AS   OWES,     10   AS   DAYS

GET    #2,     ACCOUNT

LET    DEBT!     =    CVS(OWES)

LET    DEBT!     =   DEBT!     +    CHARGES!     -PAID)

LSET    OWES    =    MKSS(DEBT!)

PUT    #2    ACCOUNT

CLOSE    #2
PRINT    "Account,    #"  ;ACCOUNT;  "    updat,ed"

CLS  Statement CLS

Erases the  contents  of the  current  Output window  and sets the pen position
to  the  upper  left-hand  corner  of  the  Output  window.

The  CLS  statement  clears  the  current  Output  window  only  and  not  other
Output  windows.

Example:

CLS

Reference          8-35



COLLISION COLuSION(object-id)

Amiga  Basic  maintains  a  queue  of  collisions  that  have  occurred  and  have
not yet been reported to the  program.   Amiga  Basic  can  remember  only  16
collisions  at  one  time.    Aft?r  the  sixteenth  collision,  it  discards  any  new
collision  information.     Each  call  of  COLLISION  removes  one  item  from
this  queue  of  collisions.

The    ob/.ecf-Jd    corresponds    to    the    ob/.ecf-;.d    in    an    OBJECT.SHAPE
statement;  it identifies the  object being tested.   The number can range from
1  to  n.    If ob/.ecf-Jd  is  0,  the  function  returns  the  identification  number  of
an    object    that    collides    with    another    object    without    removing    any
information   from  the   collision   queue.      If  ody.ecf-Jc!   is   -1,   the   function
returns  the  identification  number   of  the   window   in   which   the   collision
identified  by  COLLISIONS(0)  occurred.

If objecf-Jd  is  non-zero,  the  function  returns  the  identification  number  of
an  object  that  collided  with  ody.ecf-I.d,   and  removes  the  information  from
the  collision  queue.

If the function returns a negative number from -1  through -4,  the oby.ecf-Jd
collided  with  one  of  the  four  window  borders,  as  indicated  below.

-1                   Top  border

-2                   Left  border

-3                   Bottom  border

-4                    Right  border

See  also:    OBJECT.SHAPE  for  an  example.

8-36          Reference

EE

I-

`-



RE
COLLISION ON
COLLISION  OFF
COLLISION  STOP

COLLISION   ON

COLLISION   OFF

COLLISION   STOP

Enables,  disables,  or suspends COLLISION event trapping.   A COLLISION
occurs  when  an  object  defined  by  the  OBJECT.SHAPE  statement  collides
with another object or the window border.   Use the  COLLISION function to
determine  which  object  collided.

The  COLLISION  ON statement  enables  COLLISION event trapping by the
ON  COLLISION...GOSUB  statement.

The    COLLISION    OFF    statement    stops    event    trapping    by    the    ON
COLLISION...GOSUB    statement;    Amiga    Basic    does    not    record    any
collision  until  a  subsequent  COLLISION  ON  statement  is  executed.    The
COLLISION  STOP statement suspends  COLLISION event trapping.   Event
trapping     continues,     but     Amiga     Basic     does     not     execute     the     ON
COLLISION...GOSUB  for  an   event  until   a   subsequent   COLLISION   ON
statement  is  executed.

See   also:      COLLISION,   "Event   Trapping"   in   Chapter   6,    "Advanced
Topics".    See  OBJECT.SHAPE  for  an  example.

COLOR COLOR  Iforeground-color-id]   [,  background-color-id]

Indicates  foreground  and  background  colors  to  be  used.

Amiga  Basic  uses  the /oregrownd-co/or-j.d  specification  to  determine  the
color     for     drawing     points,      lines,      area     fill      and     text,      and     the
backgrownd-cojor-c.d  to  determine  area  surrounding  these  items.

The /oregJ.oknd-cozor-!.d  and  bczckgrownd-coJor-(.d  each  correspond  to  the
coJor-i.d defined in a PALETTE statement or to the  default color-ids  of the
Amiga  system   (see  the  PALETTE  statement  for  more  information  on  the
default  color-ids).

Reference          8-37



If a  COLOR statement is  not  specified,  and  a  PALETTE  statement  doesn't
override  the  system  color-ids,  Amiga  Basic  uses  the  system  colors;  these
colors  are  initially  white  in  the  foreground  and  blue  in  the  background,  or
the   colors   as   specified   by  the   user   with  the   Preference   Tool   from   the
Workbench.

Example:

PALETTE    1,RND,RND,RND
PALETTE    2,RND,RND,RND
COLOR   1,2

CLNG                                                                                                CLNG  (numerj.c  eJrpressj.on/

Converts  a  numeric  expression  to  long-integer  format,   rounding  off  any
fractional  part.

COMMON COMMON  variable-list

Passes  variables  to  a  chained  program.

The    COMMON   statement    is    used   in    conjunction    with    the    CHAIN
statement.      COMMON  statements   may   appear   anywhere   in   a  program,
though   it   is   recommended   that   they   appear   at   the   beginning.       This
technique  decreases  the  likelihood  that program  control  will  branch  before
the   COMMON   statements   execute,   passing   the   desired   values   to   the
chained  program.

The  same  variable  cannot  appear  in  more  than  one  COMMON  statement.
Array variables  are specified by  appending parentheses  (that is  " ( )")  to  the
variable  name.    If all variables  are to be  passed,  use  CHAIN with  the  ALL
option  and  omit  the  COMMON  statement.

Some versions of Amiga  Basic allow the  number of dimensions  in the  array
to  be  included  in  the  COMMON  statement.    This  implementation  accepts
that  syntax,  but  ignores  the  numeric  expression  itself .

8-3 8         Reference

`-

\-

`-



-

`-

Example:

This  program  illustrates the  use  of the  CHAIN  and  COMMON statements.

COMMON    ACCT,BALANCE!  ,     CHARGES()  ,     DISCOUNT!  ,     CONTACTS

CHAIN    "Receivables"

CONT                                                                                                                    CoNT

Continues  program  execution  after  an  Amiga-period  has  been  typed  or  a
STOP   statement   has   been   executed.      It   can   also   be   used   to   continue
execution  after  single  stepping.

Execution  resumes  at  the  point  where  the  break  occurred.     If  the  break
occurred  after  a  prompt  from  an  INPUT  statement,   execution  continues
with  the  reprinting  of  the  ``?"  prompt  or  the  prompt  string).

CONT   is   usually   used   with   STOP   for   debugging.      When   execution   is
stopped,    intermediate    values    may    be    examined    and    changed    using
immediate  mode statements.   Execution may be  resumed  with  CONT or  an
immediate   mode   GOTO,   which   resumes   execution   at   a   specified   line
number.     CONT  may  be  used  to  continue   execution  after  an   error  has
occurred.

CONT  is  invalid  if  the  program  has  been  edited  during  the  break.

Example:

This  example  illustrates  the  use  of  the  CONT  and  STOP  statements.

CHECK!     =25:     DEBIT!     =    9.89

PRINT   CHECK!  ,DEBIT!
STOP

LET    BALANCE!     =       CHECK!     -DEBIT!

PRINT    BALANCE!

END

Reference          8-39



COS

CSNG

8-40

COS(X)

Returns  the  cosine  of  X,  where  X  is  in  radians.

The  evaluation  of  this  function  is  performed  in  single  precision  when  the
argument  is  in  single  precision  and  in  double precision  when  the  argument

is  in  double  precision.

Example:

The  following  example  returns  the  cosine  of  1,   100,  and  100.

PRINT    "COSINE   OF    1    IS    "    COS(1)

PRINT    ''COSINE   0F   loo   IS    "    COS(loo)
PRINT    ''COSINE   0F    1000   IS    "    COS(1000)

The  following  is  displayed  on  the  screen:

COSINE   OF    1    IS       .5403023
COSINE   0F   100   IS       .8623189
COSINE   OF    1000    IS          .5623791

CSNG(X)

Converts  X  to  a  single-precision  number.

In  the  following  example,  the  product  of two  double-precision  numbers  is
displayed   in   double-precision,   then   converted   to   single   precision   and
displayed.

A#   =   6666    :    8#   =   100000
PRINT   A#*B#,    "(result   printed   in   double   precision)"
PRINT   CSNG(A#*B#)  ,    "(result   printed   in   single   precision)"

The  following  is  displayed  on  the  screen:

Reference

IRE

EE

-



ER
666600000
6 . 666E+08

(result  printed   in  double  precision)
(result  printed  in  single  precision)

See  also:     CDBL,   CINT

CSRLIN CSRLIN

Returns  the  approximate  line  number   (relative  to  the  top  border  of  the
current  Output  window)  of  the  pen.

The  value  returned  is  always  equal  to  or  greater  than   1.

In  determining the  line  number,  CSRLIN uses  the  height  and  width  of the
character  "0"  as determined by the font of the current  Output window.  This
value  is  always  greater  than,   or  equal  to,   1.

CSRLIN  is  the  opposite  of  the  LOCATE  statement,   which  positions  the

Pen.

Example:

The  following  example  records  the  current  line  and  row  numbers,  moves
the   cursor   to   the   bottom   of  the   screen,   and  prints   a   message;   it  then
restores  the  cursor  to  its  original  position  and  prints  a  message.

Y    =    CSRLIN

X    =    POS(O)

LOCATE    20,1
PRINT    ''THIS
LOCATE    Y,X

PRINT    "THIS

'    GET    CURRENT   CURSOR   LINE   NUMBER    (VERTICAL   POSITION)
'    GET    CURRENT    CURSOR   COLUMN   NUMBER    (HORIZONTAL    POSITION)

'    PLACE    CURSOR   0N   LINE    20,    COLUMN    1     (BOTTOM   0F    SCREEN)

PRINTS    AT    LOCATION    20,1     (BOTTOM   OF    PAGE)  "
'    PLACE   CURSOR   IN   ORIGINAL   LOCATION

PRINTS   AT   ORIGINAL   LOCATION   0F    CURSOR"

See  also:    POS,  LOCATE

Reference          8-41



CVI
CVL
CVS
CVD

DATA

8-42

CN1(2-byte  string)

C,WL(4-byte  string)

CWL(4-byte  string)

CND(8-byte  string)

Converts  random  file  numeric  string  values  to  numeric  values.

CVI  converts  a  2-byte  string  to  a  short  integer.     CVL  converts  a  4-byte
string to  a long integer.   CVL converts a  4-byte  string to  a long integer.  CVS
converts a  4-byte string to a single-precision number,  and  CVD  converts  an
8-byte  string  to  a  double-precision  number.

CVI,  CVL,  CVS,  and  CVD can be used with FIELD and  GET statements to
convert  numeric  values that  are  read  from  a  random  disk  file,  from  strings
into  numbers,     Use  the  VAL  function  instead  of  CVI,   CVL,   or  CVS  to
return  the  numerical  value  of  a  string.

Example:

OPEN   FileN&mes   FOR   INPUT   AS    1
Colorset=CVL (INPUTS (4 ,1 ) )
Dataset=CVL ( INPUTS ( 4 ,1 ) )

See  also:    MKIS,  MKLS,  MKSS,  MKDS,  VAL

DA;TA  constant-list

Stores  the  numeric  and  string  constants  that  are  accessed  by  the   READ
statement.

DATA  statements  are  nonexecutable  and  may  be  placed  anywhere  in  the
program.    A DATA statement  may contain  as  many  constants  as  will  fit  on
a  line  (separated  by  c.ommas).    Any  number  of  DATA  statements  may  be
used  in  a  program.    READ  statements  access  DATA  statements  in  order
(from  the  top  of  the  program  to  the  bottom).     The  data  contained  in  a

Reference

`-

-,



-

-

DATA line  may be  thought of as  one  continuous  list of items,  regardless  of
how many items  are  on a line or where the lines  are  placed in the program.

The  consfcznf-/!.s.f  parameter  may  contain  numeric  constants  in  any  format,
that  is,  fixed-point,   floating-point,   or  integer.     (No  numeric  expressions
are   allowed   in   the   list.)   String   constants   in   DATA   statements   must   be

surrounded   by   double   quotation   marks   only   if   they   contain   commas,
colons,  or significant leading or trailing spaces.   Otherwise,  quotation  marks
are  not  needed.

The  variable  type   (numeric  or  string)   given  in  the  READ  statement  must
agree  with  the  corresponding  constant  in  the  DATA  statement.

DATA   statements   may   be   reread   from   the   beginning   by   use   of   the
RESTORE  statement.

Example:

DIM   Patternoq/a(3)
DIM   Patternl%(3)
DIM   Pattern2%(3)
FOR   1=0   TO    3

READ   Pattern0%(I)
READ   Patt.ernl%(I)
READ   Pat,t,ern2%(I)

NEXT    I
DATA   &HAAAA,    &H3333,     &HFFFF

DATA   &H5555,    &H3333,    &HFFFF
DATA   &HAAAA,    &H3333,     &HFFFF

DATA   &H5555,    &H3333,    &HFFFF

See  also:    READ,   RESTORE

DATES DATES

Retrieves  the  current  date.

The    DATES    function    returns    a    ten-character    string    in    the    form
-in-dd-yyyy .

Reference          8-4 3



Example:

10   PRINT   DATES                             'PRINT    SYSTEM   DATE

The  following  is  displayed  on  the  screen:

08-10-1985

DECLARE FUNCTION Statement
DECLARE  FUNCTIONj.d  /(pc}rc!m-J!.sf//  LIBRARY

Causes   Amiga   Basic   to   search   all   libraries   opened   with   the   LIBRARY
statement for the  machine  language function  !.d in  any  expression within the

Program.

See  LIBRARY  statement  for  details  on  opened  libraries.

The  i.c! is  any valid Amiga  Basic identifier  and  can  optionally contain  one  of
the   following   trailing   declaration   characters:       (%,    &,    I.      #).      The   I.d
identifies the  name  of the  machine  language  function  and  the  type  of value
it  returns.

The pc}rc2m-Jc.sC  is  a  list  of parameters  for  the  function.    This  list  is  ignored
by  Amiga  Basic,  but  it  is  useful  for  documentation  purposes.

If the  function  is  found,  Amiga  Basic  passes  all  parameters  (if  any)  to  the
function.    The  trailing  declaration  character  (if  any)  of  the  !.c!  indicates  the
type  returned by  the  function.    If the  id  doesn't  have  a  trailing  declaration
character,   the   standard   type   identifier   rules   apply.      (See   DEFINT   for
standard  type  rules.)   For  example,   ALPHA#  returns  a  double-precision
result,    BETA%  returns  an  integer  result,  and  so  on.

See  the  CALL  statement  for  a  description  of  the  conventions  for  passing
parameters .

8-44         Reference

iRE

iE`

`-



`-

E!E

`-

Example:

DECLARE   FUNCTION   ViewportAddress&()    LIBRARY
LIBRARY   "intuition. library"
VPA&   =   ViewportAddress&(WINDOW(7) )

This  sets  the  variable  VPA&  to  the  value  returned  by  the  library  function
ViewportAddress&.

See  also:     CSNG,    DEFINT,    DEFSNG,    LIBRARY,    CALL

DEF FN DEB  FN  name [(parameter-list) I--f unction-clef inition

Defines  a  user-written  function.

The #ame parameter must be  a  legal  variable  name  with  no  spaces between
it and  DEF FN.     When  specified  in  a  program,  nczme  invokes  the  function
being  defined.

The  pczrc}mefer-/j.a/  contains  the  variable  names  in  the  function  definition
that are to be replaced when the program invokes the function.   Each name
must   be   separated   by   a   comma.      These   variables   contain   the   values
specified  in the  corresponding argument variables passed  from the  program
function  call.

The /uncfj.on-de/!.n!.f!.o"  is  an  expression,  limited  to  one  line,  that performs
the operation of the func,tion.   Variable names that appear in the  expression
do  not  affect  program  variables  with  the  same  name.

When   a   function   is   invoked,    a   variable   name   specified   in   both   the
function-definition    a.nd   the    parameter-list    contain   the    same    values.
Otherwise,  the  current  value  of  the /w#cf!.on-de/!.nj.f!.on  variable  is  used.

The  DEF  FN statement can  define  either numeric or string functions.   The
function    always    returns    the    type    specified    in    the    calling    statement.
However,  Amiga  Basic  issues  a  "Type  mismatch"  message  if  the  data  type
specified in the  calling  statement  does  not  match  the  data type  specified  in
the  DEF  FN  statement.

Reference          8-45



The  DEF  FN  statement  must be  executed  before  the  functio`n  it  defines  is
called.      Otherwise,   Amiga   Basic   issues   an   "Undefined   user   function"
message.     You  cannot  specify  a  DEF  FN  statement  in  either  immediate
mode  or  within  a  subprogram.

DEF FN statements apply only to the program in which they are defined.   If

a  I)rogram  Passes  Control  to  a  new  program  with  a  CHAIN  Statement,   a
DEF  FN  statement  in the  old  program  does  not  apply to  the  new program.

Example:

DEF   FNPERCENT(A,B)     =     (A/B)*100

INPUT    "ENTER   PORTION   0F   TOTAL   AMOUNT    ",    PORTION
INPUT    "ENTER   THE   TOTAL    ",    TOTAL

RESULT    =   FNPERCENT(PORTION,TOTAL)

PRINT    "PERCENTAGE    IS    ";RESULT;"%"

The following is  an  example  of input and  output when these  statements  are
executed.

ENTER   PORTION   0F   TOTAL   AMOUNT    276
ENTER   THE   TOTAL    1000
PERCENTAGE    IS       27.6   %

DEFINT
DEFLNG
DEFSNG
DEFDBL
DEFSTR

Relates
integer,

DEFINT  Jeffer-rcznge

DEFLNG  Jeff er-rcz„ge

DEFSNG  Jeffer-ra7tge

DEFDBL  Jecfer-rcz#ge

DEFSTR  Jeff er-rc]nge

the  beginning  letter  of  a  variable  name  to  a  variable  type   (short
long  integer,  single  precision,  double  precision,  or  string.)

Amiga   Basic   assumes   that   any   variable   name   beginning   with   a   letter
specified  in  Jeffer-range  to  be  one  of  the  variable  types  shown  below.

8-46         Reference

EE

\-/

`\J



i-

Statement
Variable

DEFINT
DEFLNG
DEFSNG
DEFDBL
DEFSTR

Type

Short  integer
Long  integer
Single  precision  (default)

Double  precision
String

Declaration
Character

A  variable  name  with  a  trailing  declaration  character   (%,   &,   !,   S,   or  #)
takes  precedence  over these  statements.    (See  "Declaring  Variable  Types"
earlier    in    this    chapter    for    more    information    on    trailing    declaration
characters . )

DEF   type   declarations   apply   only   to   the   program   in   which   they   are
declared;  they  are  reset  upon  exit  from  the  program.

Example,

DEFLNG   a-p,w

This  statement  causes  any  name  beginning  with  any  letter  from  cz  through p
and  the  letter  w  to  be  treated  as  long  integers.

DELETE DELETE   [Ji.ne] [-J..ne]

Deletes  program  lines.

The  DELETE  statement  works  with  both  line  numbers  and  alphanumeric
labels.     If  J!.ne   does  not  exist,   an   ``Illegal  function  call"   error  message   is

generated.

Reference          8-47



DIM

8-48

DIM   [SHARED]   vczr!.czb/e-/j.sf

Specifies  the  maximum  values  for  array  variable  subscripts,   and  allocates
storage  accordingly.

Use  the  DIM  statement  when  the  value  of  an  array's  subscript(s)  must  t)e

greater  than   10;  otherwise  Amiga  Basic  issues  a  "Subscript  out  of  range"
error  message.     The   minimum  value   for   a   subscript  is   always   0,   unless
otherwise  specified  with  the  OPTION  BASE  statement.

The  DIM  statement  sets  all the  elements  of the  specified  arrays  to  an  initial
value  of  zero.     The  maximum  number  of  dimensions  allowed  in  a  DIM
statement   is   255;   the   number   you   can   actually   specify   depends   on   the
amount  of  memory  available.

Specify   SHARED   to   make   the   variables   globally   accessible   to   the   main

program  and  to  all  subprograms.    The  DIM  SHARED  statement  must  be
specified  only  in the  main program.    Using a  DIM  SHARED  statement  lets

you    avoid    duplicating   the    same    SHARED    statements    among    several
subprograms.

If the array has already been dimensioned or referenced and that variable is
later     encountered     in     a     DIM     statement,     Amiga     Basic     issues     a
"Redimensioned  array"  error message.   To  avoid this  error condition,  place

DIM   statements   at   the   top   of   a   program   so   that   they   execute   before
references  to  the  dimensioned  variable  are  made.

Example:

DIM    SHARED   A,B,C(10,2)

DIM    CF(19)

FOR   1=1   T0   19
READ   CF(I)

PRINT    CF(I)

NEXT    I
DATA   0,2,4,5,7,9,11,0,1,-1,    0,0,0,0,0,0,    -12,12,0

See  also:    SHARED

Reference

-

EE

•-



END

EOF

`-

EIE=

`-

END

Terminates   program   execution,   closes   all   files,   and   returns   to   previous
mode.

END   statements   may  be   placed   anywhere   in  the   program   to   terminate

execution.    An  END  statement  at  the  end  of  a  program  is  optional.

BOFofilenumber)

Tests  for  the  end-of-file  condition.

Returns -1  (true)  if the end of a sequential input  file  has been reached.  Use
EOF to test for end-of-file while  reading in  data with an  INPUT statement,
to  avoid  "Input  past  end"  error  messages.

When EOF is used with a random  access  file,  it returns  true  if the  last  GET
statement  was  unable  to  read  an  entire  record.    It  is  true  because  it  was  an
attempt  to  read  beyond  the  end  of  the  file.

Example,

This  program  demonstrates  a  use  of  the  EOF  function.

OPEN    "I",#1,"INFO"

LINE   INPUT   #1,    LONGS
PRINT   LONGS

CLOSE    #1

OPEN    „I„'#..„INFO„

WHILE   NOT   EOF(1)

PRINT   ASC (INPUTS (1, #1)  )  ;

LET    C   =    C    +   1:     IF   C   =    10   THEN   PRINT:    LET    C   =    0
WEND

CLOSE    #1
END

Reference          8-49



ERASE

ERR
ERL

ERASE  array-variable-list

Eliminates  arrays  from  memory.

Arrays   may  be   redimensioned   after   they   are   erased,   or   the   previously
allocated  array  space  in  memory  may  be  used  for  other  purposes,     If  an
attempt  is  made  to  redimension  an  array  without  first  erasing  it,   a  error
message  is  generated.

Example:

ERASE   BobArray

ERR

ERL

Returns  the  error  number  and  the  line  on  which  the  error  occurred.

When   an   error-handling   routine   is   entered   by   way   of   an   ON   ERROR
statement,  the  function  ERR  returns  the  error  code  for  the  error,  and  the
function  ERL  returns  the  line  number  of  the  line  in  which  the  error  was
detected.

If the  line  with the  detected  error  has  no  line  number,  ERL will  return  the
number  of the  first  numbered  line  preceding the  line  with  the  error.    ERL
will  not  return  line  labels.    The  ERR and  ERL functions  are  usually used  in
IF. ..THEN statements to  direct program  flow  in  an  error-handling routine.

With the Amiga Basic Interpreter,  if the statement that caused the  error was
an  immediate  mode  statement,  ERL  will  return  65535.

See Appendix 8,  "Error Codes and Error Messages, "  for a list of the Amiga
Basic  error  codes.

8-5 0          Reference

E±lE

`-

ORE



I-

-

`-,

Example:

ON   ERROR   GOTO   errorf ix

errorf ix :
IF     (ERR=55)     AND     (ERL=90)    THEN   CLOSE#1:RESUME

ERROR ERROR  integer-expression

Simulates  the  occurrence  of an  Amiga  Basic  error,  or  allows  error  codes  to
be  defined  by  the  user.

ERROR can be  used  as  a  statement  (part  of  a  program  source  line)  or  as  a
command  (in  immediate  mode).

The  value  of  the  i.nfcger-express.;.o„  must  be  greater  than  0  and  less  than
256.    If the  value  of  the  z.nfeger-expressz.on  equals  an  error  code  already  in
use  by  Amiga  Basic  (see  Appendix  8,  "Error  Codes  and  Error  Messages''),
the  ERROR statement causes the  error message for the Amiga  Basic  error to
be  printed   (unless  errors  are  being  trapped).

To  define  your  own  error  code,  use  a  value  that  is  greater  than  the  highest
value  used  by  an  Amiga  Basic  error  code.    Use  the  highest  values  possible
to  avoid  conflicting with  duplicate  codes  in  future  versions  of  Amiga  Basic.
You  can  write  an  error  handling  routine  to  process  the  error  you  define.

If  an  ERROR  statement  specifies  a  code  for  which  no  error  message  has
been   defined,   Amiga   Basic   responds   with   an   "Unprintable   error"   error
message.       Execution   of   an   ERROR   statement   for   which   there   is   no
error-handling   routine   causes   an   error   message   to   be   generated   and
execution  to  halt.

Example:

This  example  shows  how  ERROR  is  used  in  direct  mode:

ERROR    15

String  too   long

Reference          8-51



EXP EXP(X)

Returns    e    (base   of   natural   logarithms)    to   the   power   of   X;   that   is,
2.7182818284590^X.

If   X   is    greater   than    88    (for    single-precision    numbers)    or    709    (for

double-Precision   numbers),   an   "Overflow"   error   message   is   displayed,
machine  infinity  with  the  appropriate  sign  is  supplied  as  the  result,   and
execution  continues.    The  evaluation  of this  function  is  performed  in  single

precision  when  the  argument  is  in  single  precision  and  in  double  precision
when  the  argument  is  in  double  precision.

Example,

The  following  example  returns  e  to  the  power  of  0,   1,   2,  and  3.

FOR   I    =   0   TO   3
PRINT   EXP(I)

NEXT    I

The  following  is  displayed  on  the  screen:

1
2.718282
7 . 389056
20 . 08554

FIELD

8-52

FTELD  |#If ilenumber,fieldwidth  AS  string-variable...

Allocates  space  for  variables  in  a  random  file  buffer.

It   is   good   programming  practice   to   have   a   FIELD   statement   follow   as
closely  as  possible  the  statement  that  opens  the  file  it  is  defining.

The /i.Jenkmber  parameter  corresponds  to  the  number  specified  in  OPEN
when the  file  was  created.   The /c.e/c!".dfh  is the  number  of characters  to  be
allocated  to  the  sfrj.ng-vczr!.czbJc.

Reference

ERE

``~

`u



`-

-,

FILES

The total number  of bytes  allocated in  a  FIELD  statement must not exceed
the  record  length  that  was  specified  when  the  file  was  created  with  OPEN.
Otherwise,   a   "Field  overflow"   error  message  is  generated.     (The  default
record  length  is   128  bytes.)

Any  number  of  FIELD  statements  may be  executed  for  the  same  file.    All

FIELD statements that have been executed will remain in effect at the same
time .

Note

Do not use a fielded variable name in an INPUT or LET statement.   Once  a
variable  name  is  fielded,   it  points  to  the  correct  place  in  the  random  file
buffer.   If a subsequent INPUT or LET statement with that variable name is
executed,   the   variable's   pointer   no   longer   refers   to   the   random   record
buffer,  but  to  string  space.

See  also:    GET,  LSET,  OPEN,  PUT,  RSET

Example:

This is  a fragment of a program that opens  an existing file,  gets  data  from it,
updates  it,  returns  it,   and  closes  it.

OPEN    "Payables"   AS   #2

FILES   [sfrj.ng]

Lists  all  files  in  a  given  directory.

If  you  omit  s/r!.ng,  the  statement  lists  all  files  in  the  current  directory.     If
sfr!.ng  contains  a  directory  name,   all  files  in  that  directory  are  listed.     If
sfr/.ng  contains  a  filename,  it  is  listed  if  the  file  exists.

Reference          8-53



Example:

FILES    "dfl:"
F`ILES     ''c''

FIX FIX(X)

Returns  the  truncated  integer  part  of  X.

FIX(X)  is  equivalent  to  SGN(X)+INT(ABS(X)).    The  difference  between
FIX and  INT is  that  FIX  does  not  round  off negative  numbers to their next
lower  number  (see  the  example  below).

Example,

The  following  example  shows  the  operation  of  FIX  and  INT  on  the  same
negative,  non-integer  number.

30   PRINT   FIX(-58.75)
40   PRINT    INT(-58.75)

The  following  is  displayed  on  the  screen:

-58
-59

See  also:    CINT,  INT

FOR...NEXT FOR    vczr!.czb/e=x  TO  y   [STEP  z]

NEXT   [vczrc.czb/e]  [,vczrc.c2b/e. . .]

Performs  a  series  of  instructions  in  a  loop  a  given  number  of  times.

The  FOR statement uses x,  y,  and z as  numeric  expressions,  and vczrj.czb/e  as
a  counter.      The   expression  x   is  the   initial   value   of  the   counter.      The
expression  y  is  the  final  value  of  the  counter.

8-5 4         Reference

-

-

EE



`-

`-,

The  program  lines  following  the   FOR  statement   are   executed  until  the
NEXT statement is  encountered.    Then the  counter  vczr!.c}bJe  is  adjusted by
the amount specified by STEP.   A check is performed to  see  if the  value  of
the  counter  is  now  greater  than  the  final  value  of  y.     If  it  is  not  greater,
Amiga  Basic branches  back to  the  statement  after  the  FOR  statement  and
the  process  is   repeated.      If  it  is   greater,   execution   continues   with  the
statement  following  the  NEXT  statement.    This  is  called  a  FOR...NEXT
loop.

If STEP is not specified,  the increment is  assumed to be one  (+1) .   If STEP
is  negative,  the  counter is  decreased  each time through the loop.   The  loop
is  executed  until  the  counter  is  less  than  the  final  value.

A FOR statement without  a  corresponding  NEXT statement will  generate  a
"FOR  without   NEXT"   error   message.      A   NEXT   statement   without   a

corresponding  FOR  statement  will  generate  a  "NEXT  without  FOR"  error
message.

Nested  Loops

FOR...NEXT  loops  may  be  nested;  that  is,   a  FOR...NEXT  loop  may  be

placed  within  the  context  of  another  FOR..NEXT  loop.    When  loops  are
nested,  each  loop  must  have  a  unique  variable  name  as  its  counter.    The
NEXT statement for the inside loop must appear before that for the  outside
loop.

The  variable  in  the  NEXT  statement  may  be  omitted,  in  which  case  the
NEXT  statement  matches  the  most  recent  FOR  statement.     If  a  NEXT
statement   is   encountered   before   its   corresponding   FOR   statement,    a
"NEXT   without   FOR"    error   message   is    generated   and    execution   is

terminated.

Example:

In   the   following   example,   the   FOR   statement   produces   a   loop   of   11
repetitions,  each  printing  out  the  current  value  of  I.

Reference          8-5 5



FOR   I   =   0   TO   loo   STEP   10
PRINT   I  ;
NEXT    I

The  following  is  displayed  on  the  screen:

0      10   20   30   40   50   60   70   80   90   100

FRE

GET

FRE  '-//
FRE  /-2'
FRE  ( x'

Return  numbers  of  free  bytes  in  specified  areas.

FRE(-//  returns  the  total  number  of  free  bytes  in  the  system.    FRE  (-2/
returns   the   number   of  bytes   of  stack  space   that   has   never   been  used.
FRE(j{/  where x is  not -1  or  -2  returns  the  number  of free  bytes  in  Amiga
Basic's  data  segment.

Example:

DEF   F`NMemoryLeft&   =   FRE (0) -INT ( (BobRight.+16) /16) *2* (BobBot,tom+1) *5-6

See  also:    CLEAR

GET  [#] Lf/.Jenumber| [,recordnz/mber]

GET     (x/,y/)-(x2,y2),c}rrciy-nc!me   [(!.ndex[,j.nde;t ..., I.nde;x])]

Reads  a  record  from  a  random  disk  file  into  a  random  buffer.

Gets  an  array  of  bits  from  the  screen.

The  two  syntaxes  shown  above  correspond to two  different uses  of the  GET
statement.      These   are   called   a   random   file   GET   and   a   screen   GET,
respectively.

8-5 6         Reference

`-

`J



Random  File  GET

In the first form of the statement,  the /!.Jent{77tber is the number under which
the  file  was  created  with  OPEN.    If the  recordrtctmber  is  omitted,  the  next
record   (after  the  last  GET)   is  read  into  the  buffer.     The  largest  possible
record  number  is   16,777,215.

After  a  GET statement  has  been  executed,  the  data  in  recordnwmber  may
be  accessed  directly  using  fielded  variables.     (See  "Random  Access  Files"
in  Chapter  5,  "Working With  Files  and  Devices,"  for  details  on  random  file
operations.)     INPUT#  and  LINE  INPUT#  also  may  be  executed  to  read
characters  from  the  random  file  buffer.

EOF¢i./exwmber)  may  be  used  after  a  GET  statement  to  check  if the  GET
statement  was  beyond  the  end-of-file.

Screen  GET

-

-

EE

The  second  form  of  the   GET  statement  is  used  for  transferring  graphic
images.    GET obtains  an  array  of bits  from the screen,  and  its  counterpart,
PUT,  places  an  array  of  bits  on  the  screen.

The  arguments  to  GET  include  specification  of  a  rectangular  area  on  the
display   screen   with   (x/,y/)-(jr2,y2).      The   two   points   specify   the   upper
left-hand  corner  of  the  rectangle  and  the  lower  right-hand  corner  of  the
rectangle,   respectively.

The  arrczy-nczme  is  the  name  assigned to  the  place  that  will hold  the  image.
The  array  can  be  any  type  except  string,  and  the  dimension  must  be  large
enough  to  hold  the  entire  image.

The  multiple    c."dex  parameters  for  an  array  permit  multiple  objects  in  a
multidimensional  graphic array.   This  allows looping through  different views
of  an  object  in  rapid  succession.

Reference          8-57



Unless the  array  is  of type  integer,  the  contents  of the  array  after  a  GET is
meaningless  when  interpreted  directly  (see  below).

The  required  size  of  the  array,  in  bytes,  is:

6+(    (   y2-yl+1)*2*INT((   x2-xl+16)/16)*D

where  x  and  y  are  the  lengths  of  the  horizontal  and  vertical  sides  of  the
rectangle.    D  is  the  depth  of  the  screen,  for  which  2  is  the  default.

The  bytes  per  element  of  an  array  are:

2  bytes   for  integer
4  bytes   for  single  precision
8  bytes   for  double  precision

For  example,  assume  you  want  to  GET  (10,20)-(30,40),ARRAY%.    The
number  of  bytes  required  is   6+(40-20+1)*2*(INT((30-10)+16)/16))*2  or
174  bytes.     Therefore,   you  would  need  an  integer  array  with  at  least   87
elements.

It is  possible to  examine  the  I  and y  dimensions  and  even  the  data  itself if
an  integer  array  is  used.    The  width,  height,  an  depth  of the  rectangle  can
be  found  in  elements  0,   1,  and  2  of  the  array,  respectively.

The  GET and  PUT statements  are  used  together to  transfer  graphic  images
to  and  from  the  screen.     The  GET  statement  transfers  the  screen  image
bounded  by  the  rectangle  described  by  the  specified  points  into  the  array.
The  PUT statement transfers the  image  stored  in the  array  onto the  screen.

Example:

GET     (0,O)-(127,127),P

See  also:    PUT

8-58          Reference

`-

EE

E=-/



GOSUB...RETURN-

-

\,

GOSUB  '''„e

RETURN  [J!.ne]

Branches  to  and  returns  from  a  subroutine.

The J!."e in the GOSUB statement is the line number or label of the first line
of  a  subroutine.     Program  control  branches  to  the   j!."e   after   a   GOSUB
statement  executes.     A  RETURN  within  the  GOSUB  will  return  control
back  to  the  statement  just  following the  GOSUB  statement  in  the  program
text .

A   Subroutine   may   be   called   any   number   of   times   in   a   program.      A
Subroutine also may be called from within another subroutine.   Such nesting
of  subroutines  is  limited  only  by  available  memory.

RETURN  statements  in  a  subroutine  cause  Amiga  Basic to  branch  back to
the  statement  following the  most  recent  GOSUB  statement.

A subroutine may contain more than one  RETURN statement,  should logic
dictate  a  return  at  different  points  in  the  subroutine.

The  /j."a  option  may  be  included  in  the  RETURN  statement  to  return  to  a
specific  line  number  or  label  from  the  subroutine.     This  type  of  return
should be used with care,  however,  because any other GOSUB,  WHILE,  or
FOR  statements  that  were  active  at  the  time  of  the   GOSUB  will  remain
active,    and   error    messages    such   as    "FOR   without    NEXT"    may   be

generated.

Subroutines  may  appear  anywhere  in  the  program,  but  it  is  recommended
that  the  subroutine  be  readily  distinguishable  from  the  main  program.    To
prevent  inadvertent   entry   into  the   subroutine,   precede   it  with   a   STOP,
END,    or    GOTO    statement   that   directs   program   control    around   the
subroutine .

Reference          8-5 9



GOSUB   Init,Graphics

InitGraphics :
iDraw   =   30
iErase   =   0

RETURN

GOTO

HEXS

8-60

GOTO  line

Branches  to  a  specified  line.

If  the  program  statement  with  the  number  or  label  J!.ne  is  an  executable
statement,  that  statement  and  those  following  are  executed.

If  it  is  a  nonexecutable  statement,  such  as  a  REM  or  DATA  statement,
execution proceeds  at  the  first  executable  statement  encountered  after  J!.ne.

It    is    advisable    to    use    control    structures    (IF...THEN...ELSE,WHILE
...WEND,   and   ON...GOTO)   in   lieu   of   GOTO   statements   as   a   way   of
branching,  because  a program with many  GOTO  statements  can be  difficult
to  read  and  debug.

Example:

CheckMouse :
IF   MOUSE(O)=O   THEN   CheckMouse
IF   ABS(X-MOUSE(1))    >   2   THEN   Movepicture
IF   ABS(Y-MOUSE(2))    <   3   THEN   CheckMouse

Movepicture :
PUT (X , Y)  ,  P

X=MOUSE(1)  :     Y=MOUSE(2)

PUT (X , Y)  . P

GOT0   CheckMouse

HEXS(X)

Returns   a   string  that   represents   the   hexadecimal   value   of   the   decimal
argument.

Reference

-/

`-

EE



X  is  rounded  to  an  integer  before  HEXS(X)  is  evaluated.

Example:

The  following  example  prints  the  decimal  and  hexadecimal  values  of   10
through   16.

FOR   A   =    10   TO   18
PRINT   A    ;    HEXS(A)
NEXT    A

The  following  is  displayed  on  the  screen:

`-1

~              IF...GOTO                                                  IF  ejrpressj.o#  GOTo  j!.ne [ELSE  ejse-cjaw5.e]

IF...THEN...ELSE                 IF  expresfj.on  THEN  /feen-cJawse [ELSE  eJse-c/czztse]

IF...THEN...ELSE   Block IF  expres.s!.o„  THEN

statementBlock

ELSEIF  e:rpressz.on  THEN

staternentBlock

ELSE

statementBlock

END  IF

Makes a decision regarding program flow based on the result returned by an
expression.

The     following     rules     apply     to     syntax     1     and     2     IF...GOTO     and
IF. .THEN. . .ELSE  statements:

Reference          8-61
EE`



•      If the  result of the  e;rpress!.on  is  true,  the  ffeen-cJczwse  or  GOTO

statement  is  executed.

•      If the result of the  express!.on is false,  the  fAen-cJazts'e  or  GOTO
statement    is    ignored    and    the    eJse-c/ciuse,    if    present,     is
executed.

•      The  fAen-cJcic{se  and  the  e/5.e-cJczw5'e,     can  be  nested;    that  is,

they    can    contain    multiple    Amiga    Basic    statements    and
functions.     However,   for  Syntax   1   and  Syntax  2,   the  clauses
must  not  exceed  one  line.

•     THEN  may be  followed by  either  an  Amiga  Basic  statement,  a
function,  or  a  label  or  line  number.

•      GOTO  is  always  followed  by  a  label  or  line  number.

•      If  the  statement  does  not  contain  the  same  number  of  ELSE
and  THEN  clauses,   each   ELSE  is   matched  with  the   closest
unmatched  THEN.

•      If  an  IF...THEN  statement  is  followed  by  a  line  number  or
label  in  immediate  mode,   an  "Undefined  line  number"  error
message  is  generated,  unless  a  statement  with  the  specified  line
number  or  label  had  previously  been  entered  in  program  edit
mode.

The  rules  that  apply  to  Syntax  1  and  2  also  apply  to  Syntax  3.    However,
Syntax  3  differs  in  the  following  respects:

•      The    sfc}femenfBJock    can    contain    nested    IF-THEN-ELSE
blocks.    Amiga  Basic  does  not  limit  nested  statements  to  only
one  line;  a/c}femenfBJock  can  contain  one  or  more  Amiga  Basic
statements  entered  on  different  lines.

•      If     an     expression     is     true,      the      corresponding     THEN
sfczfemenfBJock  is  executed,  and program  execution  resumes  at
the  first  statement  following  the  END  IF  statement.

8-62         Reference

-

`,'

`-



-

-

-/

•      If   no    expressions   are   true,    either    (1)    program    execution
resumes  at  the  first  statement  following  the  END  IF  statement
or   (2)  the  ELSE  sfc}femenfBJock   (if  present)   is  executed  and
program  execution  resumes  at  the  first  statement  following  the
END  IF  statement.

•      The  ELSE-IF block is  optional;  Amiga  Basic  doesn't  limit  the
number  you  can  specify.

•      The  ELSE  block  is  optional.

•      If  anything  other  than  a  remark  follows  on  the  same  line  as
THEN,  Amiga Basic considers it a single-line IF-THEN-ELSE
statement.

•      In   a   line   containing   a   block   ELSE,   ELSE   IF,   or   END   IF
statement,  only  a  label  can  precede  the  statement;  otherwise,
Amiga  Basic  issues  an  error  message.

A  block  IF  statement  does  not  have  to  be  the  first  statement  on  the  line.

Example,

INPUT   a,b
IF   a   =   1   THEN

IF   b   =   i   THEN
PRINT   "a   and  b   are   1"

ELSE
PRINT    ''a   =   1,b   <>   1"

END   IF
ELSEIF   a   >   0   THEN

IF   b   >   0   THEN   PRINT   "both   a   and   b   >   0"
REM---above   line   is   single-line-IF,   not  Block-IF
PRINT    ''a   >   0''

ELSE
PRINT    ''aL   <=    0„

PRINT   ''we  know   nothing   about   b"
END   IF

Reference         8-63



INKEYS INKEYS

Returns  either  a  one-character  string  containing  a  character  read  from  the
keyboard  or  a  nullstring  if  no  character  is  pending  at  the  keyboard.

No   characters   are   echoed.      All   characters   are   passed   through   to   the

program  except  for  Amiga-period,  which  terminates  the  program.

Note  that  if  an  Output  window  is  not  active  while  the  program  is  running,
and the user presses a key,  the key is  ignored  and  a  BEEP will  occur,  since
keystrokes  on  the  Amiga  are  only  directed  to  the  selected  window.

Example:

GetAKey :
as=INKEYS
IF`   as<>""    THEN

as=UCASES ( as)
IF   aS="Y"   THEN   Response=1
IF   as="N"   THEN   Response=2
IF   as="C"   THEN   Response=3
IF   Response=O   THEN   BEEF

END   IF
IF   Response   =   0   THEN   GOT0   GetAKey
PRINT   Response

See  also:    SLEEP

INPUT INPUT[;]Le)rompf-sfr!.r!g;]vctrj.c{bjel!.sf

Allows  input  from  the  keyboard  during program  execution.

When an INPUT statement is encountered, program execution pauses and a

question mark is printed to  indicate the  program  is  waiting for  data.    If the
pJ.ompf-sfrj.ng  is  included,  the  string  is  printed  before  the  question  mark.
The  required  data  is  then  entered  at  the  keyboard.

8-64         Reference

`-

`-

EE



I-,

`-

A  comma  may  be  used  instead  of  a  semicolon  after  the  prompt  string  to
suppress the  question mark.    For example,  the  statement INPUT  "ENTER
BIRTHDATE",BS  will  print  the  prompt  with  no  question  mark.

The    data   that   is   entered   is    assigned   to   the   variables    given   in   the
varj.abJe-J!.sf .   The  number  of  data  items  supplied  must be the  same  as  the
number  of  variables  in  the  list.    Data  items  are  separated  by  commas.

The  variable  names  in  the  list  may  be  numeric  or  string  variable  names
(including subscripted variables).    The  type  of each  data  item  that  is  input
must  agree  with  the  type  specified  by  the  variable  name.    (Strings  input  to
an  INPUT  statement  need  not be  surrounded by  quotation  marks.)

Responding  to  INPUT  with  too  many  or  too  f)ew  items  or  with  the  wrong
type  of  value  (numeric  instead  of  string,  etc.)  causes  the  prompt  message
``?Redo from start"  to be  generated.   No assignment of input values is made

until  an  acceptable  response  is  given.

Example:

The  following  example  shows  the  use  of  INPUT to  prompt  a  user  to  enter
values  for  a  conversion  program.

'    THIS    PROGRAM   CONVERTS   DECIMAL    VALUES   T0   HEXADECIMAL

ANSWERS= "Y "

WHILE     (ANSWERS="Y")

INPUT    ''ENTER   DECIMAL   NUMBER    '',    DECIMAL

PRINT    ''HEX    VALUE    OF    "    DECIMAL    "IS    "    HEXS(DECIMAL)
PRINT    "OCTAL    VALUE    OF    "       DECIMAL    "IS    "    OCTS(DECIMAL)

INPUT    ''D0   YOU   WANT    T0    CONVERT    ANOTHER   NUMBER?        ",     ANSWERS

ANSWERS    =   UCASES(ANSWERS)

WEND

END

Reference          8-65



The  following  shows  an  example  of  some  of  the  results  displayed  when  a
user  interacts  with  this  program.

ENTER   DECIMAL   NUMBER    16

HEX   VALUE   0F       16    IS    10
0CTAL   VALUE   0F       16    IS    20
D0   YOU   WANT   T0   CONVERT    ANOTHER   NUMBER?    Y

ENTER   DECIMAL   NUMBER    31

HEX   VALUE   OF       31    IS    IF

OCTAL   VALUE   OF       31    IS    37

DO   YOU   WANT   T0   CONVERT   ANOTHER   NUMBER?    N

INPUTS INPUTS (X [ , [#]/!.Jenztmber] )

Returns   a   string   of   X   characters,   and   reads   from  //.Jenwmber.      If   the

/!.Jer}wmbcr  is  not  specified,  the  characters  are  read  from  the  keyboard.

If the  keyboard  is  used  for  input,  no  characters  are  echoed  on  the  screen.
All  control  characters  are  passed  through  except  Ctrl-C,  which  is  used  to
interrupt  the  execution  of  the  INPUTS  function.

objAttributess      =   INPUTS(LOF(1)  ,i)
OBJECT. SHAPE   1,objAtt.I`ibutess

INPUT# INPUT#filenumber,variable-list

Reads  items  from  a  sequential  file  and  assigns  them  to  program  variables.

The  /j.Jenkmber  corresponds   to   the   number   specified   when  the   file   was
created  with  OPEN.     The  vc2r/.czb/e-/i'sf  contains  the  variable  names  to  be
assigned  to  the  items  in  the  file;   the  data  type  specified  for  the  variable
names  must  match  the  data  type  of  the  corresponding  items  in  the  file.

The  data  items  in  the  file  should  appear  just  as  they  would  if  data  were
being  typed   in   response   to   an   INPUT   statement.   Amiga   Basic   ignores
leading   spaces,   carriage   returns,    and   line feeds;   it   processes   any   other
character as the first digit of a number.   For numeric items,  the  next  space,

8-66         Reference

`-

``-

`-



`-/

`-

carriage  return,   line feed,   or  comma  delimits  the  last  digit  of  the  number
from  the  next  item.

For   string items,  if the  first  character  of a  string is  a  quotation  mark  ("),  a
second  quotation  mark  delimits  the  end  of  the  string  (such  a  string  cannot
contain  an  embedded  quotatiori mark).    If a  quotation  mark  is  not the  first
character,  then  a  comma,  carriage  return,  line feed,  or  the  255th  character
of  the  string  delimits  the  end  of  the  string  item.

INSTR INSTR([I,]XS,YS)

Searches for the first occurrence  of string YS  in XS,  and returns the position
at  which  the  match  is  found.    Optional  offset  I  sets  the  position  for  starting
the  search.

If  I  is  greater  than  the  number  of  characters  in  XS  (LEN(XS)),  or  if  XS  is
null  or YS  cannot be  found,  INSTR returns  0.    If YS  is  null,  INSTR returns
I  or   1.     XS   and  YS   may  be  string  variables,   string  expressions,   or  string
literals.

Example:

The  following  statements  locate   a  specific  field  within   a  string  and  then
replace  it  with  a  new   string;   INSTR  determines  the  byte  location  of  the
field.

'THIS   ROUTINE    CHANGES   THE   ADDRESS   FIELD    IN   RECORDS

RECORDS   =''n:JOHN   JONES    adr:3633    6TH    ST   WACO,    TX                                        "

PRINT    "RECORDS   =                                 "    RECORDS
OFFSET   =    INSTR(RECORDS,"adr:  ")     'FIND   START   0F   ADDRESS   adr:

MIDS(RECORDS.OFFSET,40)    =    "adl`:222   E"    ST.    WAXAHACHIE,    TX                                 "
PRINT    "MODIFIED   RECORDS   =    "    RECORDS

The  following  is  displayed  on  the  screen:

RECORDS   =

MODIFIED   RECORDS   =

n:JOHN   JONES    adr:3633    6TH    ST   WACO,    TX

n:JOHN    JONES    adr:222    ELM    ST.    WAXAHACHIE,    TX

Reference          8-67



INI

KILL

8-68

Returns  the  largest  integer  less  than  or  equal  to  X.

Example:

PRINT   INT(3.4)
X   =    INT(37.98)

PRINT   INT(X)
Y   =   INT(-32.3)
PRINT   INT(Y)

The  following  integers  would  be  printed:

3
37
-82

See  also:    CINT,  FIX

INT(X) -

KILL f ilespec           `'

Deletes  a  file  from  disk.

If  a  KILL  command  is  given  for  a  file  that  is  currently   OPEN,   a   "File
already  open"   error  message  is  generated.    The /j.Jespec  argument  is  any
legal  Amiga  filename.

Example:

This  deletes  the  file  named  MailLabels:

KILL   "MailLabels"

Reference

EE



`-

LBOUND
UBOUND

LBOUND(c}rrc}y-name[,d!.mens!.on])

UBOUND(c}rrczy-nc!me[,dj.me"sj.on])

Returns  the  lower  or  upper  bounds  of  the  dimensions  of  an  array.

The  cirrczy-#ame  is  the  name  of  the  array  variable  to  be  tested.

The  d!.mensj.on  parameter  is  an  optional  number  used  when  the  array  is
multi-dimensional,    and    specifies   the    dimensions    of   the    array   being
bounded.   The  optional d;.mensj.on parameter specifies  for which  dimension
to  find  the  bound.    The  default  value  is  1.

The  lower  bounds  are  the  smallest  indices  for  the  specified  dimension  of
the  array.     LBOUND  returns  0  or   1  depending  on  whether  the  OPTION
BASE  is  0  or   1.

Example:

LBOUND  and  UBOUND  are  particularly useful  for  determining the  size  of
an  array  passed  to  a  subprogram.     For  example,   a  subprogram  could  be
changed to  use  these  functions  rather  than  explicitly  passing upper  bounds
to  the  routine:

CALL    INCREMENT     (ARRAY1(0).     ARRAY2().    TOTAL())

SUB    INCREMENT     (A(2),     a(2).     C(2))     STATIC
FOR    I    =    LBOUND(A,1)    T0   UBOUND     (A,1)

FOR   J    =   LBOUND(A,2)    T0   UB0UND(A,2)
C(I,J)    =   A(I,J)    +   B(I,J)

NEXT   J
NEXT   I

END    SUB

Reference          8-69



LEFTS                                                                                                                     LEFTS (XS,I)

Returns  a  string  containing  the  leftmost  I  characters  of  XS.

I  must  be  in  the  range  0  to   32767.     If  J  is  greater  than  the  number  of
characters  in  XS  (LEN(XS)),  the  entire  string  (XS)  is  returned.    If I  =  0,  a

null  String  of  length  zero  is  returned.See  also:    MIDS,  RIGHTS

LEN

LET

8-70

LEN(XS)

Returns the number of characters in XS.   Nonprinting characters and blanks
are  counted.

Example:

The  following routines  shows the use  of LEN in  determining the  offset  of a
field  within  a  string.

'THIS   ROUTINE   EXTRACTS   THE   ADDRESS   a:    FROM   STRING   RECORDS

RECORDS   =    ''n:JOHN   JONES    ss:534912    99    a:3633    6TH    ST   WACO,TX"
LENGTH   =   LEN(RECORDS)         'DETERMINE   LENGTH   0F   RECORD
OFFSET    =    INSTR(RECORDS,  ''a:  ")     'FIND   START   0F   ADDRESS   a:

RIGHTCHAR   =   LENGTH   -   OFFSET   -   1
ADDRESSS    =    RIGHTS(RECORDS,RIGHTCHAR)     'EXTRACT   ADDRESS   FROM   RECORDS

PRINT   ADDRESSS

The  following  is  displayed  on  the  screen:

3833    6TH    ST   WACO,TX

'.                       [LET]   var!.c!b/e=expres5.J.on

Assigns  the  value  of  an  expression  to  a  variable.

Notice  that  the  word  LET  is  optional.    The  equal  sign  by  itself  is  sufficient
for  assigning  an  expression  to  a  variat)le  name,

Reference

`-

`-

`-



-,`

-

Example:

The   following   example   shows   the   optional   nature   of   LET   in   variable
assignments;  lines  10  and  20 perform the  same  function,  even though  LET
is  not  specified  in  line  20.

10   LET   A   =    1    :    LET   a    =    2    :    LET   C   =    3
20   D   =    1                                   E   =    2    :                 F   =   3

30   PRINT   A   a   C   D   E   F

The  following  is  displayed  on  the  screen:

123123

LIBRARY LIBRARY /I.Jenczme

LIBRARY  CLOSE

LIBRARY  opens  a  library  of  machine  language  subprograms  and  functions
to   Amiga   Basic.      LIBRARY   CLOSE   closes   all   libraries   that   have   been
opened  by  the  LIBRARY  statement.

The /!./e"czme is  a string expression designating the file where  Amiga  Basic  is
to  look  for  machine  language  functions  and  subprograms.    The  LIBRARY
statement  lets  you  attach  up  to  five  library  files  to  Amiga  Basic  at  a  time.
Amiga  Basic  continues  to  look  for  subprograms  in  these  libraries  until  a
NEW,  RUN,  or LIBRARY  CLOSE statement is  executed.   See  Appendix F
for  more  information  on  these  statements.

The  LIBRARY  statement  can  generate  the,  "File  not  found"  and  the  "Out
of  memory"  error  messages.
To use the  LIBRARY  statement,  you  must  create  a  .bmap  file  on  disk;  the
file  describes  the  routines  in  the  specified  library.     See  Appendix  F  for  a
description  of  how  to  create  this  file.

Example:

LIBRARY   "gI.aphics. library"
CALL    SetDrMd&    (WINDOW(8)  ,3)

Reference          8-71



LINE LINE    [[STEP] (xl,yl)]  -[STEP]   (j¥2,y2/,[coJor-I.d] [,blf]]

Draws  a  line  or  box  in  the  current  Output  window.

The  coordinate  for  the  starting point  of the  line  is  (;r/,y//;  the  coordinate
for  the  end  point  of  the  line  is    (x2,y2/.

The  coJor-i.cJ  specifies  the  color  to  be  used;  it  corresponds  to  the  co/or-z.d

parameter  in  a  PALErlTE  statement.

With the  ",b"  option,  a box is drawn in the foreground,  with the points  (xl,

yl)  and  (x2,y2)  as  opposite  corners.

The      ",bf"   option   fills   the   interior   of   the   box.      When   out-of-range
coordinates are given,  the  coordinate that is out of range is given the  closest
legal  value.    Boxes  are  drawn  and  filled  in  the  color  given  by  color.

With  STEP,  relative  rather  than  absolute  coordinates  can  be  given.     For
example,  assume  that the  most  recent  point  referenced  was  (10,10).    The
statement  LINE  STEP  (10,5)  would  specify  a  point  at   (20,15),   offset   10
from  xl;    and  offset  5  from  yl.

If the  STEP option is  used  for the  second  coordinate  in  a  LINE  statement,
it  is  relative  to  the  first  coordinate  in  the  statement.

Example:

LINE (0 , 0) -(120 .120)  ,  , BF

The  above  statement  draws  a  box  and  fills  it  in  with  the  foreground  color
specified  by  either  the  COLOR  statement  or  the  Amiga  system  default.

LINE INPUT LINE  INPUT  [ ; ] [ "prompc-sfrj.ng" ,./sfrj.ng-vclr!.clbJe

Reads   an  entire  line   from  the   keyboard   during  program   execution   and
places  it  in  a  string  variable  without  using  delimiters.

8-72         Reference

`-.

EE

`-



`-

-EE

`-

The  "prompt-scrj.„g"  is a literal that Amiga Basic prints to the  screen before
input  is  accepted.    Amiga  Basic   prints  question  marks  only  when  they  the
are  part  of prompt-sfr!.ng.    All  input  from  the  end  of the prompf-s'fr!.ng  to
the  carriage  return  is  assigned  to  the  sfr!.ng-var!.cibJe.

If LINE INPUT is immediately followed by a semicolon,  the carriage return
typed  by  the  user  to  end  the  line  does  not  echo  a  carriage  return/line feed
sequence  on  the  screeen.

To  terminate  a  LINE   INPUT  statement,   press  the  AMIGA  key  on  the
righthand  side  of  the  keyboard  and  a  period.

Example:

This  example  demonstrates  the  use  of  LINE  INPUT  and  LINE  INPUT#.

OPEN    "0",#2,  "INFO"

LINE   INPUT    "Customer   Data?";CUSTOMERS
PRINT    #2,CUSTOMERS

CLOSE    #2
OPEN    "I",#Z,"INFO"

LINE    INPUT    #2,CLIENTS
PRINT   CLIENTS
END

When  you  run  this  program,  the  following  is  displayed  on  the  screen:

Customer  Data?   Clarissa  Dalloway   $10.17   Penknife
Clarissa  Dalloway     $10.17     Penknife

LINE INPUT# LINE INPUT# filenumber ;string-variable

Reads  an  entire  line  from  a  sequential  file  during  program  execution  and

places  it  in  a  string  variable  without  using  delimiters.

The /j.jenwmber corresponds to  the  number  assigned to  the  file  when  it was
created  with   OPEN.     The  sfr!.ng-vczrz.c]bJe  is  the  variable   name  to   which
Amiga  Basic  assigns  the  line.

Reference         8-73



The carriage-return character delimits each line in the file.   LINE INPUT#
reads only the characters preceding the  carriage-return character,  and then
skips this character and the line feed  character before reading the  next line.

This statement is useful if each line in  a  data file  is broken into fields,  or if
an  Amiga  Basic  program  saved  in  ASCII  format  is  being  read  as  data  by

another  program,

See  also:    LINE  INPUT,  SAVE

Example:

See  the  example  for  LINE  INPUT.

LIST LIST  [''`ne]

LIST   [Ji.ne] [-[J!.ne]],   "/i.Jenczme"

Lists the program currently in memory to a List window,  a file,  or a  device.

The  /i.ne  may  be  a  line  number  or  an  alphanumeric  label.    When  a  LIST
command  is  given,  the  specified  lines  appear  in  the  List  window.

The  second  syntax  allows  the  following  options:

•      If only the  first J!.ne  is  specified,  that line  and  all  following lines
are  listed.

•      If only  the  second  J!.ne  is  specified,  all  lines  from the  beginning
of  the  program  through  the  specified  line  are  listed.

®      If  both  /!.ne  arguments  are  specified,  the  entire  range  is  listed.

•      If  a /I.jenczme  is  given  in  a  string  expression  such  as  SCRN:   or
LPT1:,  the  listed  range  is  printed  on  the  given  device.

See also:    "List Window Hints"  in  Chapter  4,  "Editing and Debugging Your
Programs.„

8-7 4         Reference

-

`-

•-.



EE

-'

Example:

This  example  produces  a  List  Window  and  lists  the  program:

LIST

LLIST                                                                                                                LLIST  [J!."e] [-[/!.ne] ]

Sends  a  listing  of  all  or  part  of  the  program  currently  in  memory  to  the
printer  (PRT:).

The  options  for  LLIST  are  the  same  as  for  LIST,  except  that  there  is  no
optional  output  device  parameter;  output  is  always  to  the  printer  (PRT:).

See  also:    LIST

LOAD                                                                                                             LOAD  If!.Jespec[,R] I

Loads  a  file  from  disk  into  memory.

If  the /i.Jespec  is  not  included,  a  requester  appears  to  prompt  the  user  for
the  correct  name  of  the  file  to  load.

The  /I.Jespec  must  include  the  filename  that  was  used  when  the  file  was
saved.

The  R  option  automatically  runs  the  program  after  it  has  been  loaded.

LOAD   closes   all  open  files   and  deletes   all  variables   and  program  lines
currently   residing   in   memory   before   it   loads   the   designated   program.
However,  if the  R option  is  used  with  LOAD,  the  program  is  run  after  it  is
loaded,  and  all  open  data  files  are  kept  open.    Thus,  LOAD  with  the  R
option  may  be  used  to  chain  several  programs   (or  segments  of  the  same
program).     Information  may  be  passed  between  the  programs  using  their
disk  data  files.

See  also:    CHAIN,  MERGE,  SAVE

Reference         8-75



LOC LOcofilenumber)

For  random  disk  files,  LOC  returns  the  record  number  of  the  last  record
read  or  written.

For  sequential  disk  files,  LOC  returns  a  different  number,  the  increment.
The increment is the numt)er of t)ytes written to or read from the  sequential
file,   divided  either  by  the  number  of  bytes  in  the  default  record  size  for
sequential   files    (128   bytes)   or   the   record   size   specified   in   the   OPEN
statement  for  that  file.     Mathematically,  this  can  be  expressed  as  shown
below.

Number  of  Bytes  Read  or Written \  OPEN  statement  Record  Size
= #  Returned  by  LOC(filenumber)

For  files  opened  to  KYBD:   or     COM1,   LOC  returns  the   value   1   if  any
characters  are  ready  to  be  read  from  the  file.    Otherwise,  it  returns  0.

When  a  file  is  opened  for  sequential  input,   Amiga  Basic  reads  the  first
record  of  the  file,   so  LOC  returns   1  even  before  any  input  from  the  file
occurs.    LOC  assumes  the /j./enwmber  is  the  number  under  which  the  file
was  opened.

LOCATE LOCA;TE  [line]   [,colunn]

Positions  the  pen   at  a  specified  column  and  line  in  the   current   Output
window.

The  value  of  the  co/wmn  and  /j.ne  parameters  must  be  equal  to  or  greater
than  1;    the  location  they  specify  is  relative  to  the  upper-left  corner  of  the
current  Output  window.    If  you  omit  these  parameters,  Amiga  Basic  uses
the  current  location  of  the  pen.

In  determining the  column  and line position,  LOCATE uses the  height  and
width  of  the  character  "0"  in  the  font  of  the  current  Output  window.

8-7 6          Reference

`-

`-

`-



EE

-

-,

LOF

LOG

Example:

The  following  example  records  the  current  line  and  row  numbers,  moves
the   cursor  to   the   bottom   of  the   screen,   and  prints   a   message;   it  then
restores  the  cursor  to  its  original  position  and  prints  a  message.

Y   =   CSRLIN       '    GET    CURRENT   CURSOR   LINE   NUMBER    (VERTICAL   POSITION)
X    =    POS(O)         '    GET    CURRENT    CURSOR   COLUMN   NUMBER    (HORIZONTAL    POSITION)

LOCATE    20,1    '    PLACE    CURSOR   0N   LINE    24,    ROW   1     (BOTTOM   0F    SCREEN)
PRINT    "THIS   PRINTS   AT   LOCATION   20.1     (BOTTOM   0F    PAGE)"
LOCATE   Y,X       '    PLACE    CURSOR   IN   ORIGINAL   LOCATION

PRINT    ''THIS   PRINTS   AT   ORIGINAL   LOCATION   0F   CURSOR''

LOFofilenumber)

Returns  the  length  of  the  file  in  bytes.

Files  opened  to  SCRN:,  KYBD:,  or  LPT1:  always  return  the  value  0.

Example:

entil`eFiles   =   INPUTS(LOP(1)  ,1)

LOG(X)

Returns  the  logarithm  of  X.    X  must  be  greater  than  zero.

The  evaluation  of  this  function  is  performed  in  single  precision  when  the
argument  is  in  single  precision  and  in  double  precision  when  the  argument
is  in  double  precision.

Example,

The  following  statements  generate  the  five  sets  of  results  by  means  of  the
LOG  function.

Reference         8-77



10   FOR   I    =    1   TO   2    STEP    .2
20   PRINT    ''LOG   0F    ";I     ''=    ";LOG(I)

30   NEXT    I
40   END

The  following  is  displayed  on  the  screen:

LOG   OF       1    =       0

LOGOF       1.2   =       .1823216
LOG   0F       1.4   =       .3364723
LOG   0F       1.6    =       .4700037
LOG   OF       1.8    =        .5877868

LPOS LPOS(X)

Returns  the  current position  of the  line  printer's  print  head  within  the  line

printer  buffer.

X  is   a   dummy   argument.     LPOS   does   not   necessarily   give  the   physical

position  of  the  print  head.

Example:

IF   LPOS(X)    >   60   THEN   PRINT    CHRS(13)

LPRINT
LPRINT USING

LPRINT  [express{.on-/j.sJ]

LPRINT  USING  string-expression;expression~list

Prints  data  on  the  line  printer.

LPRINT  and  LPRINT  USING  are  the  same  as  PRINT and  PRINT  USING
except  that  output  goes  to  the  line  printer  instead  of  to  the  screen.

Example,

See  the  examples  in  PRINT  and  PRINT  USING,

8-7 8          Reference

EE

EE(

\-



LSET`-

-/

`,-

LSEITstring-variable--string-expression

Moves  data  from  memory to  a random file buffer in preparation  for  a  PUT
statement.

If the sfr!.ng-express!.on parameter  requires  fewer bytes  than  were  fielded to

the  SfrJ.ng-v4r!.c}b`e,   LSET  left-justifies  the   string  in  the  field,   and  RSET
right-justifies  the  string.    (  Spaces  are  used  to  pad  the  extra  positions.)    If
the  string  is  too  long  for  the  field,  characters  are  dropped  from  the  right.
Numeric values  must be  converted to  strings  with  MKIS,  MKLS,  MKSS,  or
MKDS  before  they  are  used  with  LSET  or  RSET.

Note

LSET  and   RSET  may   also  be  used   with   a   nonfielded   string  variable  to
left-justify  or  right-justify  a  string  in  a  given  field.

MENU MENU  me„c{-j.d,  j./em-c.d,  sfc}fe   [,f!.fJc-sfr!.ng]

MENU  RESET
MENU  (0)
MENU  (1)

The   statements   create   custom   Menu   Bar   options   and   items  underneath
them,  or  restore  the  default  Menu  Bar.

The   functions   return  the   number   of  the   last   Menu   Bar   or   menu   item
selection  made.

The menw-!.d is the number assigned to the Menu Bar selection.   It can be  a
value  from   1  to   10.

The I.fen-I.d is the number assigned to the menu item underneath the  Menu
Bar.    It  can  be  a  value  from  0  to  20.     If  j.fem-I.d  is  between   1  and  20,  it
specifies  an  item  in  the  menu.    If !.fem-I.d  is  0,  it  specifies  the  entire  menu.

For  the  sfcice  argument,   use   0  to  disable  the  menu  or  menu  item,   1   to
enable  it,   or  2  to  enable  the  item  cincz  place  a  check  mark  by  it.     If  the
I./em-I.d  is  0,  the  state  takes  effect  for  the  entire  menu.

Reference         8-79



The  f!.fJe-a/r!.ng  is  a  string  assigned  to  be  the  title  of  a  custom  Menu  Bar
selection  or  an  item  underneath  one.

Depending  on  the  sfc2fe,  the  MENU  statement  enables  or  disables  menu
item !./em  in  MENU menu-!.d.   If the fj.fJe-sfr!.ng argument appears,  the item
name  on  the  Menu  Bar  is  changed  to  f!.fJe-sfrj.ng.

The  MENU  RESET  statement  restores  Amiga  Basic's  default  Menu  Bar.

The  function  syntax  MENU(0)  returns  a  number  which  corresponds  to  the
number of the last Menu Bar selection made.   MENU(0)  is reset to  0  every
time  it  executes,  so  the  Menu  Bar  can  be  polled  just  like  INKEYS.

The  function  syntax  MENU(1)  returns  a  number  which  corresponds  to  the
number  of the  last  menu  item  selected.

This  set  of  MENU  statements  and  functions  gives  you  the  tools  to  build
custom menus and menu items in the  Menu Bar at the top  of the screen.   If
a  MENU  0N  statement  is  executed,  the  user's  selection  of  custom  menu
items  can  be  trapped  with  the  ON  MENU  GOSUB  statement.

You  can  override  the  existing  Amiga  Basic  menu  items  with  the  MENU
statement.

Example:

The  following  ere  examples  of  menu  statements.

MENU   1, 0 ,1.  "Transactions :  "
MENU   1,1,1,  "Deposits "
MENU   1, 2 ,1,  "Withdrawals "
MENU   1,3,1,"Automatic   Payment"
MENU   1,5,1,  "Credit   Card   Purchases"

The  following  are  examples  of  MENU  functions.

Menul d=MENU ( O )

Menul tem=MENU ( 1 )

See  also:    MENU  ON,  ON  MENU,  SLEEP

8-80          Reference

ERE

-

`-



MENU ON
~          MENU OFF

MENU STOP

`-,

\-

MENU  0N
MENU  OFF

MENU  STOP

Enables,   disables,   or   suspends  trapping  MENU   events;   a   MENU   event
occurs when the user selects a menu item defined by the  MENU  statement.
The   MENU   function   can  be  used  to   determine   which   menu   item   was
selected.

The  MENU  ON  statement  enables  event  trapping.

The   MENU  OFF  statement  disables   ON  MENU  event  trapping.     Event
trapping  stops  until  a  subsequent  MENU  0N  statement  is  executed.    The
MENU  STOP  statement  suspends  MENU  event  trapping.    Event  trapping
continues,   but  Amiga  Basic  does  not  execute  the   ON  MENU...GOSUB
statement for an event until a subsequent MENU ON statement is  executed.

Example:

ON   MENU   GOSUB    CheckMenu

ON   MOUSE   GOSUB    CheckMouse
MENU    ON

MOUSE    0N

See also:   MENU,  ON MENU,  "Event Trapping"  in  Chapter  6,  "Advanced
TOpics . "

MERGE MBRGB filespec

Appends  a  specified  disk  file  to  the  program  currently  in  memory.

The /!.Jespec  must  include  the  filename  used  when the  file  was  saved.   That
file must have been saved in ASCII format to be merged.   You  can put a file
in  ASCII  format  by  using  the  A  option  to  the  SAVE  command.    If  it  was
not  saved  in  ASCII  format,  a  "Bad  file  mode"  error  message  is  generated.

Reference          8-81



Amiga    Basic    returns    to    command    level    after    executing    a    MERGE
command.

Example:

MERGE   "SortRoutine"

MIDS

8-82

MIDS (sfri.ng-a;¥p/,r!   [,m])=S`fr!.7tg-exp2

MIDS(XS,n   [,m])

The  statement  replaces  a  portion  of  one  string  with  another  string.

The  function  returns  a  string  of  length  in  characters  from  XS,   beginning
with  the  nth  character.

In  the  statement  syntax,  n  and  77t  are  integer  expressions,  and  sfJ.z.ng-exp/
and  5'/rj.ng-cj*p2   are   string   expressions.      The   characters   in   sfr!.#g-exp/,
beginning at position  ",  are  replaced by the  characters  in  sfrc.7tg-ejrp2.    If n
is  greater  than  the  number  of  characters  in  XS   (that  is,  LEN(XS)),MIDS
returns  a  null  string.

The optional in refers to the number of characters from sfr!."g-e:xp2 that are
used  in  the  replacement.    If  in  is  omitted,  all  of sfr!.ng-exp2  is  used.    The
replacement  of characters  never  exceeds  the  original  length  of ffrj.ng-a;xp/.
In the  function  syntax,  the  values n  and 77.  must be  in the  range  1  to  32767.
If 77t is  omitted or if there are  fewer than 77t  characters  to  the  right  of the  nffe
character,   all  rightmost  characters,  beginning  with  the  rith  character,   are
returned.

In the  function  syntax,  the  values n  and in must be  in the  range  1  to  32767.
If in is  omitted  or  if there  are  fewer than  in  characters  to  the  right  of the  "
character,   all  rightmost  characters,  beginning  with  the  nth  character,   are
returned.     If  7t  is  greater  than  the  number  of  characters  in  XS   (that  is,
LEN(XS)),  MIDS  returns  a  null  string.

Reference

`-

`-

EE



`-

-`

EE

Example:

The  following  statements  locate   a  specific  field  within   a  string  and  then
replace  it  with  a  new  string.

'THIS   ROUTINE   CHANGES   THE   ADDRESS   FIELD    IN   RECORDS

RECORDS   ="n:JOHN   JONES   adr!3633    6TH    ST   WACO,    TX
PRINT    "RECORDS    =                                  "    RECORDS

OFFSET   =    INSTR(RECORDS,  "adr:  ")     'FIND   START   OF   ADDRESS   adr:
MIDS(RECORDS,OFFSET,40)     =    "adl`:222   ELM    ST.    WAXAHACHIE,    TX                                  "
PRINT    "MODIFIED   RECORDS   =    "    RECORDS

The  following  is  displayed  on  the  screen:

RECORDS   =                                                   n:JOHN   JONES    adr:3633    8TH   ST   WACO,    TX

MODIFIED   RECORDS   =                       n:JOHN   JONES    adr:222   ELM    ST.    WAXAHACHIE,    TX

MKIS                                                                                          MKIS (short-I.nfeger-ejrpress!.on)

MKLS                                                                                          MKLS (/o„g-i.nfeger-e;*press!.on)

MKSS                                                                                        MKS S (s!.7tg/e-pro c!.sj.o7t-express!.on)

MKDS                                                                                MKD S (double-prec/.sj'on-e:xpre5's!.on)

Puts   numeric   values   into   string   variables   for   insertion   into   random   file
buffers.

MKIS  converts  a  short  integer  to  a  2-byte  string.

MKLS  converts  a  long  integer  to  a  4-byte  string.

MKSS  converts    a  single-precision  number  to  a  4-byte  string.

MKDS  converts    a  double-precision  number  to  a  8-byte  string.

You  must  convert  numeric  variables  to  string  variables  before  placing them
in  a  random  file.    Use  MKIS,  MKLS,  MKDS,  and  MKSS  for  this  purpose.
Then  move  the  variable  to  the  random  file  buffer  using  either  LSET  or
RSET,  and  write  the  buffer  to  the  file  using  PUT#.

Reference          8-83



Instead  of  converting  the  binary  value  to  its  string  representation,  like  the
STRS  function,   MKS  moves  the  binary  value  into  a  string  of  the  proper
length.     This  greatly  reduces  the  amount  of  storage  required  for  storing
numbers  in  a  file.

Example:

PRINT   #1,    MKIS(F`lags)  ;

The following example illustrates the use  of MKIS,  MKSS,  and  MKDS  with
random  files.

OPEN    "Account,Info"   AS   #2   LEN   =   14
FIELD   #2,8    AS   ACCTS,4   AS    CHECKS,2   AS   DEPOSITS
GET   #2,1

LET   ACCOUNTNO#

LET    CHECKING!

LET    SAVINGS%   =
LSET   ACCTS       =

LSET   CHECKS   =

LSET   DEPOSITS
PUT   #2,1

CLOSE    #2
END

=   987654332556#

123456  I
2500

MKDS ( AC COUNTNO# )

MKSS ( CHECKING !  )

MKI S ( SAVINGS%)

See  also:    CVI,  CVS,  CVL,  CVD,  LSET,  RSET,  Chapter  5,  ``Working with
Files  and  Devices."

MOUSE MOUSE(n/

The  MOUSE function returns information  about the  left  mouse  button  and
the location of the mouse's  cursor within the  active  window.    MOUSE does
not  monitor  the  right  button,  which  is  used  to  control  the  menu   (see  the
MENU  function  for  information  on  monitoring  menu  selections).

MOUSE  performs  seven  functions;  specify  any  value  from  0  through  6  as
the n parameter to select the  desired function.   The functions  are  described
in  the  sections  that  follow.

8-8 4         Reference

RE`

``-



-

`-

MOUSE(0):  Mouse  Button  Position

MOUSE(0)   gives  the   status   of  the   left   mouse   button.     After   executing
MOUSE(0),  Amiga  Basic  retains  the  start  and  end  positions  of the  mouse
until  a  subsequent  MOUSE(0)  is  executed.    Therefore,  after  detecting  the
movement  of  the  mouse  through  MOUSE(0),  a  program  should  then  use

MOUSE(3),   MOUSE(4),   MOUSE(5),   and  MOUSE(6)   to  determine  the
starting  and  ending  positions.

The  following  table  explains  the  values  returned  by  MOUSE(O).

Value
Returned

0

-1

-2

Explanation

The left MOUSE button is  not  currently down,  and
it  has   not   gone   down   since   the   last   MOUSE(0)
function  call.

The  left  MOUSE button  is  not  currently  down,  but
the  operator  clicked  the  left  button  once  since  the
since  the  last  call  to  MOUSE   (0).     To  determine
the   start   and   end   points   of   the   selection,    use
MOUSE(3),        MOUSE(4),        MOUSE(5),        and
MOUSE(6).

The  left  MOUSE button  is  not  currently  down,  but
the  operator  clicked  the  left  button  twice  since  the
last  call  to  MOUSE   (0).     To  determine  the  start
and    end  points  of  the  selection,  use  MOUSE(3),
MOUSE(4),  MOUSE(5),  and  MOUSE(6).

The operator is holding down the left mouse button
after   clicking   it   once.      The   return   of  this   value
usually  signifies  that  the  mouse  is  moving.

The operator is  holding down the left mouse button
after   clicking  it   twice.      The   return   of  this   value
usually  signifies  that  the  mouse  is  moving.

Reference          8-85



MOUSE(1):  Current X  Coordinate

MOUSE(1)  returns  the  horizontal  (X)  coordinate  of  the  mouse  cursor  the
last  time  the  MOUSE(0)  function  was  invoked,  regardless  of  whether  the
left  button  is  down.

MOUSE(2):  Current  Y  Coordinate

MOUSE(2)  returns  the  vertical  (Y)  coordinate  of the  mouse  cursor the  last
time  the  MOUSE(0)  function  was  invoked,  regardless  of  whether  the  left
button  was  down.

MOUSE(3):  Starting  X  Coordinate

MOUSE(3)  returns  the  horizontal  (X)  coordinate  of  the  mouse  cursor  the
last  time  the  left  button  was  pressed  before  MOUSE(0)   was  called.     Use
MOUSE(3)  in combination with MOUSE(4)  to  determine the  starting point
of  a  mouse  movement.

MOUSE(4):  Starting  Y  Coordinate

MOUSE(4)  returns  the  vertical  (Y)  coordinate  of the  mouse  cursor the  last
time  the  left  button  was  pressed  before  MOUSE(0)  was  called.

MOUSE(5):  Ending  X  Coordinate

If the left button was down the last time MOUSE(0)  was called,  MOUSE(5)
returns  the  horizontal   (X)   coordinate  where  the  mouse  cursor  was  when
MOUSE(0)  was  called.    If the  left button  was  up  the  last  time  MOUSE(0)
was  called,   MOUSE(5)   returns  the  horizontal   (X)   coordinate  where  the
mouse  cursor  was  when  the  left  button  was  released.    Use  MOUSE(5)  to
track  the  mouse  as  the  operator  moves  it  and  to  determine  the  coordinate
where  movement  stops.

8-86          Reference

'-

`-/

`-I



`-

EE

MOUSE(6):  Ending  Y  Coordinate

MOUSE(6)   works   the   same   way   as   MOUSE(5),   except   it   returns   the
vertical  (Y)  coordinate.

Mouse Example

The  following  routine  checks  the  movement  of the  mouse.    As  the  mouse
moves,  the  routine  moves  a  graphic  image  in  array  P  to  the  new  X  and  Y
positions.

CheckMous e :
IF   MOUSE(O)=O   THEN   CheckMouse
IF   ABS(X-MOUSE(1))    >   2   THEN   Movepicture
IF   ABS(¥-MOUSE(2))    <   3   THEN   CheckMouse

Movepicture :
PUT (X , Y)  , P

X=MOUSE(1)  :     Y=MOUSE(2)

PUT (X , Y)  , P

GOT0   CheckMouse

MOUSE ON
MOUSE OFF
MOUSE STOP

MOUSE  ON
MOUSE  OFF

MOUSE  STOP

Enables,  disables,  or  suspends  event  trapping based  on  the  pressing  of the
mouse  button.

The   MOUSE   0N   statement   enables   event   trapping  based   on   a   user's
pressing  the  mouse  button.

The  MOUSE  OFF  statement  disables  ON  MOUSE  event  trapping.    Event
trapping  stops  until  a  subsequent  MOUSE  ON  statement  is  executed.  The
MOUSE STOP statement suspends  MOUSE event trapping.   Event trapping
continues,  but  Amiga  Basic  does  not  execute  the  ON  MOUSE...GOSUB
statement  until  a  subsequent  MOUSE  ON  statement  is  executed.

Reference          8-8 7



See   also:       MOUSE,    ON   MOUSE,    ``Event   Trapping"    in    Chapter    6,
"Advanced  Topics."

NAME

NEW

8-88

NA\:ME  old-filename  AS  new-filename

Changes  the  name  of  a  disk  file.

Both  parameters  are  string  expressions.    The  oJd-/i.Jcnczme  must  exist  and
the  new-/I.Jename  must  not  exist.    Otherwise,  an  error  results.

Example:

In   this   example,   the   file   that   was   formerly   named   Accounts   becomes
LEDGER.

NAME    "Account,s"    AS    ''LEDGER"

NEW

Deletes  the  program  currently  in  memory  and  clears  all  variables  and  the
List  window.

NEW  is  entered  in  immediate  mode  or  selected  from  the  Project  menu  to
clear   memory   before   entering   a   new   program.      If   there   is   a   program
currently  in  memory,   and  that  program  has  been   changed   since   it   was
loaded,    a   requester   will   automatically   appear   to   allow   saving   of   that

program.    If executed from  within  a program,  NEW  causes  Amiga  Basic  to
return  to  edit  mode.

NEW closes  all files  and turns  off tracing mode.   When  you  execute  NEW,
the  windows  retain  their  sizes  and  locations.

Reference

`-

`-/

RE



NEXT-

IRE

NEXT   [vczr!.abJe[,vor!.abJe...]]

Allows  a  series  of instructions to be performed in  a loop  a  given number of
times.

See  "FOR...NEXT"  for  a  discussion  of  NEXT  usage.

OBJECT.AX
OBJECT.AY

OBJECT.A\X  object-id ,  value

OBJECT.A`Y  object-id,  value

Define  the  acceleration  of  an  object  in  the  x  and  y  directions.

The    ob/.ecf-¢.c!       corresponds   to    the    ob/.ecf-!.d   in    an    OBJECT.SHAPE
statement;  it  identifies  the  object  whose  acceleration  is  to  be  defined.

The vciJwe  specifies the  acceleration  rate  in  number  of pixels per second per
second.

OBJECT.CLIP OBJECT.CLIP    (x/,y/)-(x2,y2)

Defines  a  rectangle  and  instructs  Amiga  Basic  not  to  draw  objects  outside
this  area.

The   :x/   and   ;r2   parameters   define   the   left   and   right   boundaries   of  the
rectangle   on   the   x   axis,    and   y/    and   y2   define   the   top   and   bottom
boundaries  on  the  y  axis.    The  default  value  of  the  CLIP  rectangle  is  the
border  of  the  current  Output  window.

Reference          8-8 9



OBJECT.CLOSE OBJECT.CLOSE  [object-id   [,object-id...]]

The  OBJECT.CLOSE  statement  releases  all  memory  held  by  one  or  more
objects  when  the  object  is  no  longer  needed.

The    ob/.ecf-j.d    corresponds    to    the    ob/.ecf-/.d    in    an    OBJECT.SHAPE
statement;   it   identifies   the   one   or   more   objects   in   the   current   Output
window  that  OBJECT.CLOSE  will  release.

If  object-id  is  not  specified,  all  objects  in  the  current  Output  window  are
released.

OBJECT.HIT OBJEC;I.HIT  object-id,   [MeMask]   [,HitMask]

Determines  collision  objects  for  ob/.ecf-(.cZ.

The    ob/.ecf-!.d    corresponds    to    the    objecfi.d    in    an    OBJECT.SHAPE
statement.

By   default,   all   objects   collide   with   each   other   and   the   border.      This
statement  can  be  used  to  allow  some  objects  to  pass  through  each  other
without  causing  a  collision.

A4eA4c[sk  is   a   16-bit  mask  that  describes   ody.ecf-!.d.     fJ!.fMczsk   is   a   16-bit
mask that   describes  the  object that  ob/.ecf-j.c!  is  to  collide  with.    If the  least
significant  bit  of  fJc.c7„ctsk  is  set,  oZ>/.ecf-!.cZ    collides  with  the  border.     If  the

MeMask  of  one  object,  when  logically  ANDed  to  the  HitMask  of  another
object,   produces   a   non-zero   result,   ob/.ecf-I.d   collides   with   any   object
described  by  HitMask  and  a  COLLISION  event  occurs.

For  more  information  on   defining  Ate/\4ask   and  H!.f/\4c2sk,   see  the  Using
HitMask   and   MeMask   section   of  the   "Graphics   Animation   Routines,"
chapter  in  the  A77t{'gcz  ZioM  Kernej  A4cznwczj  for  details.

8-90          Reference

`-

-,



-'

`-

-

Example:

OBJECT.SHAPE   1,Ast,eroids
OBJECT.SHAPE    2,Ship$
OBJECT.SHAPE   3,Missies
OBJECT.HIT   1,8,7    'collides   with  border,    ship,    missle
OBJECT.HIT   2,2,9    `collides   wit,h   border,    asteroid
OBJECT.HIT   3,4,9    'collides   with   bol`der,    asteroid

OBJECT.ON
OBJECT.OFF

OBIBCT.ON   [object-id   [,object-id...] ]

OBIf3C;I.OFF     [object-id   [,object-id...]]

These  two  statements  make  one  or  more  objects  visible  or  invisible.

The    ody.ecf-!.cJ    corresponds    to    the    ob/.ecf-!.d    in    an    OBJECT.SHAPE
statement;   it  identifies  an  object  within  the   current   Output  window  that
OBJECT.ON  or  OBJECT.OFF  will  respectively  make  visible  or  invisible.

In  OBJECT.ON,  if  oby'ecf-!.d  is  not  specified,  all  objects  within  the  current
Output window are made visible.  If the  object was previously started with  an
OBJECT.START  statement,  it  moves  again.

In  OBJECT.OFF,  if ob/.ccfi.d is  not specified,  all  objects  within the  current
Output  window  are  made  invisible.   This  statement  halts  the  object  if it  was
started  with  OBJECT.START,  and  prevents  future  collisions.

Example:

See  OBJECT.SHAPE  for  an  example  of  OBJECT.ON.

See  also:     OBJECT.START  and  OBJECT.STOP

Reference          8-91



OBJECT.PLANES             OBJECT. PLANES  object-id,    [plane-pick] [ ,plane-on-off]

Sets  the  bob's  planepICK  and  place-on-off  masks.     For  details  see  the
Amiga  ROM  Kernel  Manual.

The    ob/.ecf-j.d    corresponds    to    the    ob/.ecf-z.d    in    an    OBJECT.SHAPE
statement;  it  identifies  an  ot)ject  in  the  current  Output  window.

The  plane-pick  and  plane-on-off  ca.n  be  an  integer  from  0  to  2SS.     It
defaults  to  the  value  established  by  the  Object  Editor.

OBJECT.PRIORITY OBJECT.PRIORITY  oby.ecf-I.d,  vciJwe

Sets  a priority that determines  when  an  object is  drawn  in  relation  to  other
objects  with  higher  or  lower  priorities.    This  statement  affects  only  bobs;  it
has  no  effect  on  sprites.

Two  objects  assigned  the  same  priority  are  drawn  in  random  order.

The    oby.ecf-i.d    corresponds    to    the    ob/.ecf-!.d    in    an    OBJECT.SHAPE
statement;  it  identifies  the  object  to  be  drawn.

The  vc2Jwe  is  a  number  from  -32768  to  32767  indicating  the  priority;  the
higher  the  value  specified,  the  higher the  priority.    For  example,  an  object
with  a  priority  of  8  is  displayed  "in  front  of"   objects  with  a  priority  of  0
through  7.

OBJECT.SHAPE

Statement  syntax  1                                                  OBJECT.SHAPE  ob/.ccf-i.d,  dc/!.nj.f!.on

Syntax   1   of  the   OBJECT.SHAPE  statement   defines   the   shape,   colors,
location,  and  other  attributes  of  an  object  that  can  be  moved  around  the
current  Output  window.    This  includes  blitter-objects  (bobs)  and  Vsprites

8-92         Reference

`-

`-

`-



-'

-

\J

as  discussed  in  the    "Graphic  Animation  Routines"  chapter  of  the  Amj.gc}
ROM  Kernel  Manual.

The  oby.ecc-I.d  identifies  the  object  and  is  referred  to  by  other  OBJECT
statements;  object-j.d  can  range  from   1  to  n,  where  n  is  only  limited  by
memory  available.

The   de/!.n!.f!.on   is   a   string  expression   that   describes   the   static   attributes

(including  size,  shape,  and  color)  of the  object.    The  Object  Editor  utility
program,  written  in  Amiga  Basic  and  supplied  with  the  system,  builds  this
string  expression.    See  Chapter  7  for  information  on  using  this  program.

Statement  Syntax  2 OBIBCT.SHA\PE object-idl ,  object-id2

Syntax  2  of the  OBJECT.SHAPE  statement  copies  the  shape  of ob/.ecc-I.d2
to   ob/.ecc-!.d/,   creating  a   new   object.      Both   objects   share   a   significant
amount   of  memory;   thus   memory   requirements   for   multiple   objects   is
reduced  when  they  are  created  with  Syntax  2.

Even    though  ob/.ecf-!'d2  and    ob/.ecf-!.d/  share  memory,  you  can  specify
different  attributes  to  each  using  other  OBJECT  statements.    Amiga  Basic
initializes  the   values   assigned   to   OBJECT.X,   OBJECT.Y,   OBJECT.VX,
OBJECT.VY,  OBJECT.AX,  and  OBJECT.AY  to  0  for  this  purpose.

Example:

OPEN    "ball"   FOR   INPUT   AS   1
OBJECT. SHAPE   1, INPUTS (LOP (1)  ,1)

In the  above  example,  the  static attributes  of the  object  (including the  size,
shape,  and  color)  are  in  the  file  bcijj  earlier  created  by  the  user  with  the
Object  Editor  program  (see  Chapter  7).

Reference          8-9 3



The following gives an example of an Amiga Basic routine that starts up and
handle  collisions  of the  objects  defined in bczJJ.     Refer to the  other  sections
of  this  chapter  for  an  explanation  of  the  COLLISION  statement  and  the
other  OBJECT  statements.

WINDOW   4,  "Animation" ,  (310, 95) -(580 ,170)  ,15

0N   COLLISION   COSUB   Bounceoff
COLLISION   0N
OPEN   "ball"   FOR   INPUT   AS   1   'file   created  by   the   Object   Editor
OBJECT . SHAPE    1, INPUTS (LOP (1)  ,1)
CLOSE    1
OBJECT.X    1,10

OBJECT.Y    1,50
OBJECT.VX    1,30

OBJECT.VY    1,30
OBJECT . ON

OBJECT .  START

WHILE    1

SLEEP
WEND

Bounceoff:
saveld   =   WINDOW(1)
WINDOW    4

i=COLLISI0N(0)
IF    i=O   THEN   RETURN

j =COLLI S ION ( i )
IF   j=-1   0R   j=-3   THEN

'object  bounced  off   left   or  right  border
OBJECT.VY    i,-OBJECT.VY(i)

ELSE
'object   bounced  off  top   or  bot,tom  border

OBJECT.VY    i,-OBJECT.VY(i)
END   IF
OBJECT .  START
WINDOW   saveld

RETURN

OBJECT.START
OBJECT.STOP

OBJECT.START   [ob/.ecf-;.d   [,oG/.ecf-i.d...]]

OBJECT.STOP     [ob/.ecf-!.cJ   [,ob/.ecf-!.cZ...]]

The  OBJECT.START  statement  sets  one  or  more  objects  into  motion.

The  OBJECT.STOP  statement  freezes  the  motion  of  one  or  more  objects.

8-9 4         Reference

EE

ERE

`-/



ERE

EE

The    ob/.ecf-!.d    corresponds    to    the    ob/.ecf-j.d    in    an    OBJECT.SHAPE
statement;  it  identifies  one  or  more  objects  in  the  current  Output  window
that  OBJECT.START  or  OBJECT.STOP  respectively  sets  into  motion  or
freezes .

In  OBJECT.START,  if ob/.ccfi.d  is  not  specified,  all  objects  in  the  current
Output  window  are  set  in  motion.

In  OBJECT.STOP,  if  ob/.ecf-!.d  is  not  specified,   all  objects  in  the  current
Output  window    are  frozen.

When  two  objects  collide,   Amiga  Basic  does  an  OBJECT.STOP  on  both
objects.    When  one  object  collides  with  the  border,  Amiga  Basic  does  an
OBJECT.STOP  on  the  object,

Example:

See  OBJECT.SHAPE  for  an  example  of  the  OBJECT.START  statement.

OBJECT.VX
OBJECT.W

Statement  Syntax

Function  Syntax

OB]BCT.VX  object-id,  value
OBJECT.VY    object-id,  value

OBIBCT.VX(object-id)
OBIBCT .VY ( object-id )

The  statement  defines  the  velocity  of  an  object  in  the  x  and  y  directions.
The  function      returns  the  velocity  of  an  object  in  the  x  and  y  directions.

The    ob/.ecf-i.c!    corresponds    to    the    ob/.ecf-!.d    in    an    OBJECT.SHAPE
statement;  it  identifies  the  object  to  which  the  velocity  applies.

Reference          8-9 5



The  vc}jcte  in  the  statement  defines  the  velocity  in  number  of  pixels  per
second.    The  function  returns  the  same  value.

Example:

OBJECT.VX    1,30

OBJECT.VY    1,30

See  also:     OBJECT.AX,   and  OBJECT.AY,  and  OBJECT.SHAPE  for  an
example  of  the  use  of  this  statement  with  other  OBJECT  statements.

OBJECT.X
OBJECT.Y

Statement  Syntax

Function  Syntax

OBJECT.X object-id,  value
OBJECT.I  object-id,  value

OBJECT.X(object-id)
OBIEC;I.Y(object-id)

The  statements    place  the  object    at    a  specified  position  in  the   Output
window,  which is the  starting point for animation.   The functions return the
current  X  and  Y  coordinates  of the  upper  left-hand  corner  of  the  object's
rectangle .

The    ob/.ecf-c.d    corresponds    to    the    ob/.ecf-!.d    in    an    OBJECT.SHAPE
statement,  it identifies  the  object  whose  upper  left  corner  is  to  be  defined

The  vc!/we    defines  the  X  or  Y  coordinate;  it  can  be  a  numeric  expression
ranging  from  -32768  to  32767.

You   can   use   the   statement   to    establish   an   initial   starting   point   for
animation,  or to relocate the  object  in the  Output  window  during excution;
animation  then  resumes  at  the  new  starting  point.

8-9 6         Reference

`-,

-'

--,



`-

E=n

OCTS

The  OBJECT.X  and  OBJECT.Y functions  return respectively the  current X
and  Y  coordinates  of  the  upper  left  corner  of  the  object's  rectangle.

Example:

OBJECT.X    i,10

OBJECT.Y    1,50

See  OBJECT.SHAPE for an example of the use of this statement with other
OBJECT  statements.

OCTS(X)

Returns   a   string   that   represents   the   long-integer   value   of   the   decimal
argument.    X  is  rounded  to  an  integer  before  OCTS(X)  is  evaluated.

Example:

The  following  example  shows  the  use  of  OCTS  in  a  decimal  conversion

Program.

'    THIS    PROGRAM    CONVERTS    DECIMAL    VALUES   T0   HEXADECIMAL

ANSWERS= " Y "

WHILE     (ANSWERS="Y")

INPUT     ''ENTER    DECIMAL    NUMBER    ",     DECIMAL

PRINT    "OCTAL    VALUE   OF    "       DECIMAL    ''IS    "    OCTS(DECIMAL)

INPUT    ''DO    YOU    WANT    T0    CONVERT    ANOTHER   NUMBER?        ",     ANSWERS

WEND

END

The  following  shows  an  example  of  some  of  the  results  displayed  when  a
user  interacts  with  this  program.

ENTER   DECIMAL    NUMBER    16

0CTAL   VALUE   OF       16    IS    20

See  also:     HEXS

Reference          8-97



ON BREAK ON  BREAK  GOSUB  /czbeJ

ON  BREAK  GOSUB  0

Tells  BASIC to  call the  specified routine  when the user presses  CTRL-C  or
selects  Stop  from  the  Run  menu.

The JabeJ is  a label  or  a line  number in the  subroutine that receives  control
when  the  user  tries  to  stop  the  program.

Example:

ON   BREAK   GOSUB    loo
BREAK   0N

10   GOT0   10

100   PRINT   "Sorl`y,    this   pl`ogram   can't   be   stopped"
RETURN

See  also:    BREAK  ON,   Chapter  6  "Event  Trapping."

ON  COLLISION ON  COLLISION  GOSUB  Jc}beJ

ON  COLLISION  GOSUB  a

Tells  BASIC  to  call  the  specified  routine  when  the  COLLISION  function
returns  a non-zero value  (that is,  when an object collides  with the border  or
another  object) .

The Jc}be/ is a label  or  a  line  number in the  subroutine that receives  control.
GOSUB  0  disables the  COLLISION event.   The  ON COLLISION statement
has  no  effect  until  the  event  has  been  enabled  by  the   COLLISION   ON
statement.

See     also:           "Event     Trapping"     in     Chapter     6,      COLLISION,     and
OBJECT.SHAPE  for  an  example.

8-9 8         Reference

EIIE

`-

`-



ON  MENU`-

-

-

ON  MENU   Uusut}  /c!c)e.

ON  MENU  GOSUB  a

Tells  BASIC  to  call  the  specified  routine  whenever  the  MENU(0)  function
would  return  a  non-zero  value  (that  is,  whenever  the  user  selects  a  menu
item) .

The  /czbeJ  is  a  label  or  a  line  number  of  a  subroutine  to  which  control  is

passed  when  the  MENU(0)  function  returns  a  non-zero  value.    GOSUB  0
disables  the  MENU  event.    The  ON  MENU  statement  has  no  effect  until
the  event  has  been  enabled  by  the  MENU  ON  statement.

See  also:     "Event  Trapping"  in  Chapter  6,  MENU  statement

ON  MOUSE ON  MOUSE    GOSUB  JcibeJ

ON  MOUSE  GOSUB  0

Tells  BASIC to  call  the  specified  routine  whenever the  user  presses  the  left
mouse  button.

The  JczbeJ  is   a  label   or  line  number  of  a   subroutine  to  which   control   is

passed  when the user presses the  left mouse button.    GOSUB  0  disables the
MOUSE  event.    The  ON  MOUSE  statement  has  no  effect  until  the  event
has  been  enabled  by  the  MOUSE  ON  statement.

See   also:      "Event  Trapping"   in   Chapter   6.   MOUSE   function,   MOUSE
statement.

ON TIMER ON  TIMER(n)  GOSUB  jcibeJ

ON  TIMER  GOSUB  0

Tells  BASIC to  call the  specified  routine  whenever  a  given time  interval has
elapsed.

Reference          8-99



The statement causes an event trap every n  seconds.   The Jabe/ is  a label  or
line   number  of  a   subroutine  to   which   control   is  passed  when  the  time
interval  n  elapses;  n  must  be  greater  than  zero  and  less  than   86400   (the
number  of  seconds  in  24  hours).    GOSUB  0  disables  the  TIMER  event.

The ON TIMER statement has no effect until the event has been enabled by
the  TIMER  ON  statement.

See  also:    TIMER,  "Event  Trapping"  in  Chapter  6,  "Advanced  Topics"

OPEN

Statement  Syntax  1
OPEN  mode ,  [#] f ilenumber , f ilespec [ , f ile-buffer-size]

Statement  Syntax  2
OPEN   filespec[F`OR  mode]   AS    [#]filenumber[LEN=file-buffer-size]

Allows  input  or  output  to  a  disk  file  or  device.

OPEN  associates  a /!./enwmber  with  a  filename.

A file  must be  opened before  any  I/0  operation  can  be  performed  on  that
file.      OPEN   allocates   a   buffer   for   I/0   to   the   disk   file   or   device   and
determines  the  mode  of  access  that  is  used  with  the  file.

The /I./e„umber  is  an  integer  expression  whose  value  is  in  the  range   1  to
255.   The number is  associated  with the  file  for  as  long  as  it  is  open,  and  is
used  to  refer  other  I/0  statements  to  the  file.

The/!.Jespec is a string expression containing the name  of the file,  optionally

preceded  by  the  name  of  a  volume  or  device.

The  file-buffer-size  cannot  exceed  32,767  bytes.    1£  the  file-buffer-size
option is not used,  the  default length is  128  bytes  for random  and  512 bytes
for  sequential  files.     For  random  files,  the /!./e-bct//cr-s!.ze  should  be  the
record length  (numt)er of characters in  one record)  of the  file to be  opened.

8-100          Reference

-

-

EE



EE

`-

For  sequential  files,  the /i.Je-bu/tor-s!.ze  specification  need  not  correspond
to  an  individual  record  size,   since  a  sequential  file  may  have  records  of
different  sizes.    When  used  to  open  a  sequential  file,  the /!.Je-bw//er-s!.ze
specifies  the  number  of  characters  to  be  loaded  to  the  buffer  before  it  is
written  to  or  read  from  the  disk.    The  larger the  buffer,  the  more  room  is
taken  from  BASIC,  but  the  faster  the  file  I/0  runs.

Syntax  1

For the  first  syntax,  the  mocze  is  a  string  expression  whose  first  character  is
one  of  the  following:

Specifies  sequential  output  mode.
Specifies  sequential  input  mode.
Specifies  random  input/output  mode.
Specifies  sequential  append  mode.

Syntax  2

For  the  second  syntax,  the  mode  is  one  of  the  following  keywords:

OUTPUT

INPUT

APPEND

Specifies  sequential  output  mode.

Specifies  sequential  input  mode.

Specifies   sequential   output   mode and sets the
file pointer to the end of the file.   A PRINT# or
WRITE#     statement   then   adds   a   record   to
the  end  of  the  file.

If  the  mocJc  is  omitted  in  the  second  syntax,   the  default  random  access
mode  is  assumed.

Example:

OPEN    "ball"   FOR   INPUT   AS    1
OPEN   FileNameAS   FOR   INPUP   AS   2
OPEN   FileNameBS   FOR   OUTPUT   AS    3

Reference          8-101



OFTION  BASE OPTION  BASE  n

Declares  the  minimum  value  for  array  subscripts.

This  statement  determines  the  minimum  value  that  array  subscripts  may
have.    If  n  I.a  1,  then  1  is  the  lowest  value  possible;  if  n  is  0,  then  0  is  the

lowest Value Possible.   The  default base  is  0.   Specifying an  OPTION  BASE
other  than  1  or  0  will  result  in  a  syntax  error.

The  OPTION  BASE  statement  must  be  executed  before  arrays  are  defined
or  used.

Example,

If  the  following  statement  is  executed,  the  lowest  value  an  array  subscript
can  have  is   1.

OPTION   BASE    1

PAINT PAINT   [STEP] (x,y)   [  ,pcz(.nfco/or-i.d   [,GorcJercoJor-J.c!]]

Paints  an  enclosed  area  the  specified  color.

The  x  and  y    are  coordinates  of  any  point  within  an  area  in  the  window
containing  a  border--for   example,   any  point  within   a   circle,   ellipse,   or
polygon.

When  specified,  STEP indicates that the  x  and y  coordinates  specify  a  pixel
location reJc2f;.ve to  the  last location  referenced.   When  omitted,  the x and  y
coordinates  specify  an  czbso/wfe  location.

The  pc}j.nfcoJor-i.cZ    identifies  the  color  the  region  is  to  be  painted.     If  you
omit this parameter,  BASIC uses the foreground color  as set by the  COLOR
statement.

8-102          Reference

-

`-

`-



`-

-

E!EO

The   borcJerco/or-c.d  identifies  the  color  of  the   edge   of  the   region  to  t)e

painted.     If  you  omit  this  parameter,   BASIC  uses  the  color  specified  by
paint color-id .

The  pa(.nf coJor-!.d  and  borcJerco/or-i.d  are  values  that  correspond  to  the
coJor-!.c!  parameters  in  a  PALETTE  statements.

Note

You  must  specify  a  type  of  16  through  31  in  the  WINDOW  statement  that
created  the  window  containing  the  region  to  be  painted.

Example:

hue   =   RND*3
CIRCLE    (x,y)  ,radius,hue
PAINT    (x,y),hue

See  also:    PATTERN,  AREA,  AREAFILL

PALETTE PA\LE:TT`E3  color-id,  red,  green,  blue

Defines  a  "paint  can"  and  the  color  it  holds  for  reference  by  other  BASIC
statements .

The  co/or-!.d  is  a  value  from  0  to  31  used  in  other  BASIC  statements  to
define   a   "paint   can."     The   czepfA   parameter  of  the   SCREEN   statement
determines   the   maximum   number   of   colors   you   can   use,   limiting   the
maximum  value  you  can  assign  to  coJor-!.c!.

Note:   The  Amiga system uses co/or-¢.d   0,  1,  2  and  3;  any color  assigned to
these   numbers   through    a    PALETTE    statement    overrides   the    system
assignments.       The    Amiga    system    initially    defines    color    identification
numbers  0,   1,   2,   and  3  as  follows:

Reference          8-103



blue
white
black
Orange

You can reference these numbers in BASIC statements requiring a coJor-!.d,

keeping in mind that the user can reassign colors to these numbers using the
Preference  Tool  from  the  Workbench.

The   recJ,   gJ.ee#,   cnd   bJue   parameters   each   contain   a   value   from   0.00
through   1.00   indicating   a   decimal  percentage   of  red,   green,   and   blue.
Combined,  these  parameters  define  a  color.    The  table  below  shows  the
specifications   you   make   for   recJ,   gree„,   c!#d  b/we     to   obtain   the   colors
indicated  in  the  right-hand  column.

Colors                        Red                    Green

aqua                                 0.00                       0.93
black                               0.00                       0.00
blue  (dark)                 0.40                      0.60
blue   (sky)                     0.47                       0.87
brown                              0.80                       0.60

gray                                    0.73                        0.73
green                                 0.33                        0.87
green   (lime)                0.73                        1.00
orange                              1.00                       0.73

purple                             0.80                      0.00
red   (cherry)                 1.00                       0.60
red   (fire  engine)      0.93                      0.20
tan
violet
white

yellow

8-104          Reference

1.00                          0.87

1.00                          0.13

1.00                           1.00

1.00                           1.00

Blue

0.87

0.00
1.00

1.00

0.53

0.73

0.00
0.00
0.00

0.93

0.67
0.00
0.73

0.93
1.00

0.13

ERE

`-

`-



-I

\-

`-

The  color you specify may override previous color assignments made by the
Amiga  system.

Example:

PALETTE    1,RND,RND,RND

PALETTE   a,RNI),ENI),RND
COLOR   1,2

pATrEEN PATTERN  [/!.ne  paffer„/   [,c!recz  pczffern]

Indicates  the  texture  of text,  lines,  and  the  interior  of  polygons.

The  j!.ne pczffern  is  an  integer  expression  that  defines  a  16-bit  mask  to  be
used  for  line  drawing.

The c!recz pczffern is the name of an integer array containing the pattern.  The
array  defines  a  16-bit  wide  by  N bit  high  mask to  be  used  for  polygon  fill.
In this mask,  N is the number of elements in the integer array.   N must be a

power  of  two.

The  values  you  specify  for  /!.ne  paffem     and  czreci  pczffern  determine  the
appearance  of the pattern.    For  more  information  on  how the  values  relate
to  the  pattern  drawn,   see  the  Patterns  section  in  the   "Graphics  Support
Routines"   chapter  of  the  Ami.gc}  Ron  KerneJ  Mc}nctczJ.

Example:

DIM   AREA.PAT%(3)

AREA.PAT%(0)    =   &H5555

AREA.PAT%(1)     =    &HAAAA

AREA.PAT%(2)    =   &H5555

AREA.PAT%(3)     =    &HAAAA

PATTERN   &HF`FF , AREA . PAT%

See  also:    AREA  and  COLOR  statements.

Reference          8-105



PEEKL

PEEK

PEEKL(c2cJCJress/

Returns  the  long-integer  word  read  from  memory  location  (ctddre,?a/.

The  c2ddres.s  is  a  numeric  expression  in  the  range  from  0  to   16777216;  it
represents  the  address  of  the  memory  location.     The  numeric  expression

must  be  an  even  number;  otherwise  BASIC  displays  an  error  message.

The  function  returns  the  32-bit  value  stored  at  ac!czresf .

See   also   the   POKEL  statement,   which   writes   a   long-integer   word   to   a
specified  memory  location.

PEEK(c}ddress/

Returns  a  one-byte  integer  from  memory  location  c}ddrcs.s.

The returned value is  an integer in the range  0 to  255.   The  czcJdress must be
in  the  range  0  to   16777215.

See  also the  POKE statement,  which writes  a  one-byte  integer to  a  specified
memory  location.

PEEKW PEEKW(ciddress'/

Returns  the  short-integer  word  from  memory  location  czddress.

The  c!dcJress  is  a  numeric  expression  in  the  range  from  0  to   16777216;  it
represents  the  address  of  the  memory  location.     The  numeric  expression
must  be  an  even  number;  otherwise  BASIC  displays  an  error  message.

The  function  returns  the   16-bit  value  stored  at  ctdc!ress.

See  also  the  POKEW  statement,   which  writes  a  short-integer  word  to  a
specified  memory  location.

8-106          Reference

`-

`-

`-



POINT

POKE

ERE

-

-

POINT  ( I,y  '

Returns  the  color-id  of  a  point  in  the  current  Output  window.

The  arguments x c}nd y are the  coordinates in the  current  Output window  of
the pixel to be referenced.   The function returns a number that corresponds

to  the  coJor-z.cZ  in  a  PALETTE  statement.

Coordinates  (0,0)  define  the upper  left-hand  corner  of the  current  Output
window.

Coordinate  values  outside  of  the  current  Output  window  return  the  value
-1.

POKE  I,  J

Writes  a  byte  into  a  memory  location.

I and J are  integer  expressions.   The  expression  I represents the  address  of
the memory location,  and J is the data byte in the range 0 to 255.   I must be
in  the  range  0  to   16777215.

See  also  the  PEEK  statement,   which  returns  a  one-byte  integer  from  a
specified  memory  location.

Warning

Use  POKE  carefully.    Altering  system  memory  can  corrupt  the  system.    If
this  happens,  reboot  the  Amiga.

See  also:    PEEK,  VARPTR

Reference          8-107



POKEL POKEL  adczress,  vcijue

Writes  a  long-integer  word  into  memory  location  ciddress.

The c}ddress is  a numeric expression in the range from  0 to  16777216.   The
numeric expression must be  an  even number;  otherwise  BASIC displays  an

error  message.

The   vc}j"e   is   a   numeric   expression   from   -2147483648   to   2147483647
stored  at  the  specified  address.

See  also  the  PEEKL  statement,  which  returns  a  long-integer  word  from  a
specified  memory  location.

Warning

Use  POKEL carefully.   Altering system  memory can  corrupt the  system.    If
this  happens,  reboot the  Amiga.

POKEW POKEW  address,  value

Writes  short-integer  word  into  memory  location  c}ddress.

The address is a numeric expression in the range from  0 to  16777216.   The
numeric expression must be  an  even number;  otherwise  BASIC displays  an
error  message.

The   value   is   a   numeric   expression   from   -65536   to    65535;    numeric
expressions  outside  this  range  are  truncated  to   16  bits  and  stored  at  the
specified  address.

See  also the  PEEKW statement,  which  returns  a  short-integer  word  from  a
specified  memory  location.

8-10 8          Reference

`-

-`

I-



-

`-

tH

POS

Warning

Use POKEW carefully.   Altering system memory can corrupt the system.   If
this  happens,  reboot  the  Amiga.

POS  /y  '

Returns  the  approximate  line  number  of pen  in  current  Output  window.

The line  number returned by  POS  is  based  on the  width  and  height of the
character  "0"  in  the  Output  window's  current  font.

This  value  is  always  greater than  or  equal  to  1.    LOCATE is  the  inverse  of
the  POS  function.

Example:

The  following  example  records  the  current  line  and  row  numbers,  moves
the   cursor  to   the  bottom   of  the   screen,   and  prints   a  message;   it  then
restores  the  cursor  to  its  original  position  and  prints  a  message.

Y   =   CSRLIN    '    GET   CURRENT   CURSOR   LINE   NUMBER    (VERTICAL   POSITION)
X    =    POS(O)     '                           GET    CURRENT    CURSOR   COLUMN   NUMBER    (HORIZONTAL

POSITION)
LOCATE    20,1    '                       PLACE   CURSOR   ON   LINE    20,    ROW   1     (BOTTOM   OF    SCREEN)

PRINT    ''THIS   PRINTS   AT   LOCATION   20,1     (BOTTOM   0F   PAGE)  "
LOCATE   Y.X    '                          PLACE   CURSOR   IN   ORIGINAL   LOCATION
PRINT    ''THIS   PRINTS   AT   ORIGINAL   LOCATION   0F   CURSOR"

PRESET PRESET  [STEP]/x,y  /   /,coJor-!.d  /

Sets  a  specified  point  in  the  current  Output  window.

PRESET  works  exactly  like  PSET,   except  that  if  you  omit  coJor-j.d,  the
specified  point  is  set  to  the  background  color.

Reference         8-109



The  ;*  and  y  coordinates  specify  the  pixel  to  be  illuminated.

When specified,  STEP indicates that the x  and y coordinates  specify  a pixel
location relative to the last location referenced.   When omitted,  the x  and y
coordinates  specify  an  absolute  location.

The  coJor-!.d  specifies  the  color  to  be  used;  it  corresponds  to  the  cojor-!'cJ

parameter  in  a  PALETTE  statement.

If  an  out-of-range  coordinate  is  given,   no  action  is  taken,   and  no  error
message  is  given,

The  syntax  of  the  STEP  option  is:

s;TF:I(xoffset,yoffset)

For   example,  if the  most  recently  referenced  point  is  (10,10),  then  STEP

(10,0)  would reference  a point  at  an  offset  of  10  from x and  0  from y;  that
is   (20,10).

PRINT PRINT  [express(.o"-j!.sf ]

Displays data to the screen in the current Output window.   (See  LPRINT for
information  on  printing  data  on  a  printer.)

If   the    expresfj.ox-J!.sf    is    omitted,    a    blank    line    is    printed.        If    the
express!.on-//.sf  is  included,  the  values  of the  expressions  are  printed  in  the
Output  window.     The   expressions  in  the   list  may  be   numeric   or   string
expressions.     (String  constants  must  be  enclosed  in  quotation  marks.)

Print  Positions

The position of each printed item  is  determined by the punctuation used to
separate the items in the list.   In the list of expressions,  a comma causes the
next value to be printed  at the beginning of the  next  comma  stop,  as  set by
the  WIDTH  statement.    A  semicolon  causes  the  next  value  to  be  printed

8-110          Reference

ERE

EE

`~



- immediately adjacent to the last value.   Typing one or more  spaces between
expressions  has  the  same  effect  as  typing  a  semicolon.

If  a  comma  or  a  semicolon  terminates  the  list  of  expressions,   the  next
PRINT statement  begins  printing on the  same  line,  spacing  accordingly.    If
the   list   of   expressions   terminates   without   a   comma   or   a   semicolon,   a
carriage return is printed at the end of the line.   If the printed line  is longer
than the line width as set by the WIDTH statement,  BASIC goes to the next
physical  line  and  continues  printing.

Printed  numbers   are   always  followed  by  a  space.     Positive   numbers   are

preceded  by  a  space.     Negative  numbers  are  preceded  by  a  minus  sign.
Single  precision  numbers  that  can  be  represented  with  7  or  fewer  digits  in
the  unscaled  format  as  accurately  as  they  can  be  represented  in  the  scaled
format  are  output using the unscaled  format.    For  example,  1E-7  is  output
as  .0000001  and  lE-8  is  output  as  lE-08.    Double precision  numbers  that
can   be   represented   with   16   or   fewer   digits   in   the   unscaled   format   as
accurately  as they can be  represented  in the  scaled  format  are  output using
the  unscaled  format.    For  example,   1D-15  is  output  as  .000000000000001
and  lD-17  is  output  as  lD-17.

Note

A  question  mark  may  be  used  in  place  of  the  word  PRINT  in  a  PRINT
statement.     This   can  be   a   time-saving  shorthand  tool,   especially   when
entering  long  programs  with  many  consecutive  PRINT  statements.

PRINT USING PPLINT  US"G  string-exp;expression-list

Prints  on  the   screen  strings  or  numbers  in  a  format  you  specify.      (See
LPRINT  USING  for  information  on  printing  data  on  a  printer.)

The   sfr!."g-exp   is    a   string   literal    (or   variable)    composed    of   special
formatting characters.   These  formatting characters  determine the  field  and
the  format  of  the  printed  strings  or  numbers.        You  can  include  literal
characters  in  the  sfri.ng-exp.    Precede  with  an  underscore  (_)  each  format
symbol  (!,  &,  #,  etc.,  described  later  in  this  section)  you  wish  to  use  as  a
literal  character.

Reference          8-111



The  expressi.on-Ji.Jf  contains  the  String  expressions  or  numeric  expressions
that are to be printed;  each expression must be separated by  a semicolon or
a  comma.

String  Fields

You  can  specify  I.  \\  ,  and  &  to  perform  special  formatting  function  on
string  fields  that  are  to  be  printed.

\nspaces\

&

8-112          Reference

The     I     character    specifies    that    only    the    first
character  in  the  string  is  to  be  printed.

\nspcices\     represent     any     number     of     blank
characters between two  slashes;  this  specifies that  2
+  n  characters  from  the  string  are  to  be  printed;
BASIc ignores any other characters in the field.     If

you  specify

\\           two   characters   are   printed,   regardless   of
the  number  of characters  in the  field.    For
each     space     you     insert     between     the
brackets,      an      additional      character      is

printed.    For  example,

\  \         causes  three  characters  to  be  printed.     If

you   specify   more   spaces   than   are   in   the
field,    BASIC   left-justifies   the   field   and

pads  the  extra  spaces  to  the  right.    If  you
specify  fewer  spaces  than  are  in  the  field,
BASIC  ignores  the  extra  characters  in  the
field .

Specify    &   for   string   fields    of   variable   length.
BASIC  always  prints  the  entire  string.

`-

`u

E=ZI



`-

`-/

E=E

Numeric Fields

BASIC   allows   the   following   special   characters   to   define   the   format   of
numeric  expressions,  as  summarized  below.

Character      Effect  on  printed  out|)ut

#                          Specifies  the  number  of  digit  positions.
Inserts  a  decimal  point.
Inserts  a  plus  or  minus  sign,  as  applicable
Inserts  a  trailing  minus  sign  for  negative  numbers.
Fills  leading  spaces  with  asterisks.
Prints  a  dollar  sign  to  the  immediate  left  of  a  number.
Fills  leading  spaces  with  asterisks  and  inserts  a  dollar  sign.
Prints commas where required to the left of the decimal point.
Specifies  exponential  format.
Specifies  a  literal  character  follows.

These  characters  are  described  in  detail in the  sections that  follow.    Amiga
Basic treats  any  other  character   in the  format string as  literal  output.    For
example,

PRINT   USING    ''BALANCE   =   SS####.##";balance

The  #  character  specifies  the  positions  that  must  be  filled  with  a  number
when the expression is printed.   If the number has  fewer positions than the
# positions  specify,  BASIC justifies the  number to the right  and precedes  it
with  spaces.

You  can  insert  a  decimal  point  within  a  #  field;    BASIC  prints  the  #  digits
specified  on both  sides  of the  decimal point.    BASIC precedes  the  decimal
point  with  a  zero  if  necessary.

The  following  examples  show  decimal  point  specifications:

Reference          8-113



PRINT   USING    "##.##";  .78
PRINT   USING    "##.##";10.2,5.3,.234

The  following  numbers  are  displayed:

0.78
10.20   5.30   0.23

A plus  sign  at  the  beginning  or  end  of the  format  string  causes  the  sign  of
the  number  (plus  or  minus)  to  be  printed  before  or  after  the  number.

A minus  sign  at the  end  of the  format  field  causes  negative  numbers  to  be

printed with  a trailing minus  sign.   The  following examples  show use  of the
plus  and  minus  signs:

PRINT   USING    "+##.##";-68.95,    2.4,    -9
PRINT   USING    "##.##-";    -68.95,    22.449,    -7

These  statement  generate  the  following:

-68.95   +2.40   -9.00

88.95-22.45   7.00-

A double asterisk at the beginning of the format string causes leading spaces
in  the  numeric  field  to  be  filled  with  asterisks.    The  second  asterisk  also
specifies  positions  for  two  or  more  digits.    The  statement

PRINT   USING    "**#.##";    12.39,    -0.9,    765.1

prints  the  following:

*12.39   *-0.90   785.10

8-114          Reference

`-

\-

`-



SS

**S

-i

-

RE

A double dollar sign causes a dollar sign to be printed to the immediate left
of the formatted number.   The  SS  specifies two more digit positions,  one  of
which  is  the  dollar  sign.    The  exponential  format  cannot be  used  with  SS.
Negative  numbers  cannot be  used unless  the  minus  sign  trails  to  the  right.

The  statement

I'RINT   USING   "SS###.##";    456.78.    9.3

prints  the  following:

$458.78   $9.30

The  double  asterisk  dollar  sign  ("S)  at  the  beginning  of  a  format  string
combines  the  effects  of  the  two  symbols.     Leading  spaces  are  filled  with
asterisks and a dollar sign is printed before the number.    * ts  specifies three
more  digit  positions,one  of  which  is  the  dollar  sign.

Do  not use the  exponential  format  with  "S.    In  negative  numbers,  minus
signs  appear  immediately  to  the  left  of  the  dollar  sign.    The  example

PRINT   USING    "**S##.##";    Z.34.    999.9

prints  the  following:

***$2 . 34*$999 . 90

If  you  place  a  comma  to  the  left  of  the  decimal  point  in  a  format  string,
BASIC prints  a  comma to the  left  of every third  digit.    (This  has  no  effect
on  the  portion  of  the  number  to  the  right  of  the  decimal  point.)     If  you
place a comma at the end of the format string,  BASIC prints it as part of the
string.      A   comma   specifies   another   digit   position;   it   has   no   effect   if
specified  with  exponential  (^^^^)  expressions.    The  example

Reference          8-115



PRINT   USING    "####,.##";    1234.5
PRINT   USING   "####.##,";    1234.5

prints  the  following:

1. 234 . 50
1234 . 50 ,

Place an underscore  (I   to print the character as  a literal,  as  shown below.

PRINT   USING   ''+##.##_!";12.34
PRINT   USING   "_?##.##_?";12.34

These  statements  display  the  following:

!  12 .  34 !

?12 . 34?

Place   four   carets    (^^^^)    after   the   digit   position   characters   to    specify
exponential format.   The four carets allow  space for  E+ to be printed.   You
can  also  specify  a  decimal  point  position.    BASIC  justifies  the  significant
digits  to  the  left,  adjusting the  exponent;  unless  you  specify  a  leading +  or
trailing + or -,  BASIC prints a space  or minus sign to the left of the decimal

point.    The  following  examples  shows  the  exponential  format:

PRINT   USING    "##.##^^^^";234.56

PRINT   USING    ".####^^^^";888888
PRINT   USING    "+.##^^^^";123

These  statements  display  the  following:

2 . 95E+02
. 8889E+06
+ .12E+03

8-116          Reference

`-

`-/

`-



EE

I-,

`-

?a  Overflow  Indicator

If  a  number  is  too  large  to  fit  within  a  field,   Amiga  Basic  prints   a  %
character   in  the   result  to   indicate   an   overflow,   as   shown   in   the   next
example.

PRINT   USING   "##.##":987.654

These  statement  display  the  following:

%987  . 65

If  the  number  of  digits   specified  exceeds   24,   BASIC  issues  the   "Illegal
function  call"  message.

PRINT#
PRINT#  USING             PRINT# /j./e„c{mber, [USING sfri.ng-exp,./  expressl.on-/!.sf

Writes  data  to  a  sequential  file.

The  /i.Je"ctmber  corresponds  to  the  number  specified  when  the  file  was
opened  for  output.     The  sfr!.ng-exp  can  consist  of  any  of  the  formatting
characters   described   under   "PRINT   USING."      The   express!.on-jj.s'f   are
numeric  or  string  expressions  to  be  written  to  the  file.

PRINT#  does  not  compress   data,   but  rather  writes  it  to  the  file  just  as
PRINT  displays  it  on  a  screen.    Therefore,  be  sure  to  delimit  the  data  to
ensure  writing  only  the  data  you  require  in  the  correct  format.

Delimit  nwmerc.c  expressions  in  expressc.o#-Jis/  as  shown  in  the  following
example:

PRINT    #1,A;B;C;X;Y;Z

(Commas  used  as  delimiters  cause  extra  blanks  to  be  written  to  the  file.)

Delimit  sfri.%g  expressions  with  semicolons  and  special  delimiters   (instead
of  semicolons   alone)   so   that  they   can  t)e   processed   separately   when   a

Reference          8-117



program reads them in from the file using INPUT#.     Here is what happens
when  strings  are  delimited  with  semicolons  only:

AS   =    '`CAMERA"

BS   =    ''93804   -1"
PRINT#   1,AS;BS

Both  AS  and  BS  appear  as  one  contiguous  string  in  the  record:

CAMERA93604-1

This  can  be  corrected  by  specifying  a  comma  as  a  special  delimiter  as
follows:

PRINT#   1,AS; " ,  " ;BS

which  writes  the  following to  the  file:

CAMERA , 93604-1

A program  can  process  this  format  as  two  separate  variables.

Surround each string that contains commas,  semicolons,  leading blanks,  or
carriage  returns,  with  explicit  quotation  marks  using  CHRS(34).    (See  the
explanation  of  CHRS  in  this  chapter  for  information  on  how  this  function
works.)

For    example,  the  following  statements

AS   =    "CAMERA,    AUTOMATIC"

BS   =    '`93604-1"
PRINT   #1,AS;BS

write  the  following  image  to  a  file:

CAMERA,  .AUTOMATIC93604-1

If  you  read  this  file  with  the  following  statement

INPUT    #1,AS,BS

8-118          Reference

`-

`-



i-A

-

`-

PSET

note  that  the  original  input  is  now  reassigned  differently:

AS   =    ''CAHERA"

BS   =    ''AUTOMATIC93604-1"

To  write  the  data  correctly  to  the  file,  use  CHRS(34)  to  specify  double

quotation  marks  as  follows:

PRINT    #1, CHRS (34)  ; AS ; CHRS (34)  ;  "  ,  " , CHRS (34)  ;BS ; CHRS (34)

Then,  the  statement

INPUT   #1,    AS,BS

assigns  the  variables  to  the  correct  string  as  follows:

AS   =    "CAMERA,     AUTOMATIC"

BS   =    '`93804-1"

You  can  also use the  PRINT# statement  with the  USING option to  control
the  format  of  the  file,  as  shown  below.

PRINT#1, USING" SS### . ## ,  " ; J ; K ; L

See  also:    WRITE

PSET  [STEP]   (x,y  )   [,coJoric!  ]

Sets  a  point  in  the  current  Output  window.

The  I  and  y  coordinates  specify  the  pixel  that  is  to  be  colored.

When specified,  STEP indicates that the x and y coordinates specify a pixel
location relative to the last location referenced.   When omitted, the x and y
coordinates  specify  an  absolute  location.

The  coJor-!.d  specifies  the  color  to  be  used;  it  corresponds  to  the  coJor-!.d
parameter  in  a  PALETTE  statement.

Reference          8-119



Example:

'Draw  a  t,housand  stars   in  raLndom   locations
FOR   I   =   1   TO   1000

x   =   INT(RNI)*820)

y   =   INT(RND*200)
PSET (x , y)

NEXT   I

See  also:    PRESET  and  COLOR

FTAB

PUT

PTAB(X)

Moves  the  print  position  to  pixel  X.

PTAB  is  similar  to  TAB,   except  that  PTAB  indicates  the  pixel  position
rather  than  the   character  position  to   advance  to.      If  the   current  print
position is  already beyond pixel X,  PTAB retreats to that pixel  on the  same
line.    Pixel  0  is  the  leftmost  position.    I  must  be  in  the  range  0  to  32767.
PTAB  may  only be  used  in  PRINT statements.

A  semicolon  (:)  is  assumed  to  follow  the  PTAB(I)  function,  which  means
PRINT  does  not  force  a  carriage  return.

PUT  [#]   /!.Jenumber  [,recorc!-"wmber]

PUT   [STEP]    (x,y),arrc!y   [(J.ncze;r[,!.%c!e;r...])] [,czcfj.opt-verb]

Writes  a  record  from  a  random  buffer  to  a  random  access  file.

Draws  a  screen  graphics  image  obtained  in  a  GET  statement.

The two syntaxes shown above correspond to two  different uses  of the  PUT
statement.      These   are   called   a   random   file   PUT   and   a   screen   PUT,
respectively.

8-120         Reference

`-

`-

EE



`-

`-

ERE

Random  File  PUT

For the first syntax,  the /I.jenumber is the number under which the  file was
opened.     If  the  record-number  is  omitted,   BASIC  will  assume  the  next
record number  (after the  last PUT).   The largest possible record number  is
16777215;  the  smallest  is   1.

PRINT#,  PRINT# USING,  and  WRITE# may be used to put  characters  in
the  random  file buffer before  executing  a  PUT  statement,  but  most  often,
the  buffer  is  filled  by  FIELD  and  LSET  or  RSET  statements.

In the  case  of WRITE#,  Amiga  Basic pads  the buffer  with  spaces  up to the
carriage  return.    Any  attempt  to  read  or  write  past  the  end  of  the  buffer
causes  a  "Field  overflow"  error  message  to  be  generated.

Screen  PUT

In the second syntax,  PUT uses(x/, y/)  as the pair of coordinates specifying
the  upper  left-hand  corner  of  the  rectangular  image  to  be  placed  on  the
screen  in  the  current  Output  window.

The  c!rrczy  is  the  name  assigned  to  the  array  that  holds  the  image.     (See
"GET"  for  a  discussion  of  array  name  issues.)

The !.ndex allows you to PUT multiple objects in each array.   This technique
can   be   used   to   loop   rapidly   through   different   views   of   an   object   in
succession.

The c2cf!.o7t-verb is one  of the  following:   PSET,  PRESET,  AND,  OR,  XOR.

If  the  czcf!.o"-verb  is  omitted,  it  defaults  to  XOR.

The c2cfi.on-verb performs the interaction between the  stored image  and the
one  already  on  the  screen.

Reference          8-121



Example:

PUT    (0,O)  ,BobArray,PSET

See  also:    GET,  PRESET,  PSET,  PRINT,  WRITE,  FIELD,  LSET,  RSET

RANDOMIZE

READ

RANDOMIZE  [express!.on]   I   [TIMER]

Reseeds  the  random  number  generator.

This statement reseeds the random number generator with the  express!.on,  if

given,  where the  expres'sJ'o" is either an integer between -32768  and  32767,
inclusive,  or  where  the  expre5.s!'o"  is  TIMER.    If  the  e:xpress'!.on  is  omitted,
BASIC    suspends    program    execution    and    asks    for    a    value    before
randomizing,  by  printing:

Random   Number   Seed    (-32768   to   32767)?

If the  random number  generator is  not reseeded,  the  RND  function  returns
the  same  sequence  of  random  numbers  each  time  the  program  is  run.    To
change  the  sequence  of  random  numbers  every  time  the  program  is  run,

place   a   RANDOMIZE   statement   at   the   beginning   of  the   program   and
change  the  argument  with  each  run.

The  simplest  way  to   change   a  random  sequence  of  numbers  with  each
program  run  is  to  use  RANDOMIZE  TIMER.     In  this  case,  the  random
number  seed  is  the  number  of  seconds  that  have passed  since  midnight.

See  also:    RND

TrBAD  variable-list

Reads  values  from  DATA  statements  and  assigns  them  to  variables.

A  READ  statement  must  always  be  used  in  conjunction  with   a   DATA
statement.   READ statements assign DATA statement values to variables on

8-122         Reference

`-

`-

RE



`-

`-

-'

REM

a  one-to-one  basis.    READ  statement  variables  may  be  numeric  or  string,
and the  values  read must  agree  with the  variable types  specified.    If they  do
not  agree,  BASIC  issues  the  ``Syntax  error"  message.

A single  READ  statement may  access  one  or more  DATA statements  (they
are  accessed  in  order),  or  several  READ  statements  may  access  the  same

DATA  Statement.     If  the  number  of  variables  in  the  vczr!.czbJe-/!.sf  exceeds
the number of elements in the  DATA statements,  BASIC issues  an  "Out of
data"  error  message.    If the  number  of variables  specified  is  fewer than  the
number of elements in the  DATA statements,  later READ  statements begin
reading data at the  first unread  element.   If there  are  no  subsequent  READ
statements,  the  extra  data  is  ignored.

To  reread  DATA  statements  from  the  start,  use  the  RESTORE  statement.

DIM    CF(19)

FOR   1=1   T0   19
READ   CF(I)
PRINT    CF`(I)

NEXT    I

DATA      0,2,4,5,7,9,11,0,1,-1,    0,0.0,0,0,0,    -12,12,0

See  also:    DATA,  RESTORE

REM  remc2rk

Allows  explanatory  remarks  to  be  inserted  in  a  program.

REM  statements  are  not  executed  but  appear  exactly  as  entered  when  the

program  is  listed.

REM statements may be branched into from a GOT0 or GOSUB statement.
Execution   continues   with   the   first   executable   statement   after   the   REM
statement.

Remarks may be  added to the  end  of a line by preceding the remark with  a
single  quotation  mark  instead  of  the  REM  keyword.

Reference          8-123



Warning

The  DATA  statement  treats  REM  as  valid  data,   so  don't  specify  it  in  a
DATA  statement  unless  you  want  it  considered  as  data.

RESTORE RESTORE  [/j.ne]

Allows  DATA  statements  to  be  reread  from  a  specified  line.

After a  RESTORE statement with no specified line number is  executed,  the
next READ statement accesses the first item in the first DATA statement in
the program.   If the /!.ne is specified,  the next READ statement accesses the
first  item  in  the  specified  DATA  statement.

MainLoop ,
SOUND   RESUME

RESTORE   Song
COSUB   Playsong
GOT0   MainLoop

Song:
DATA    1,3,3,3
DATA   12g>ge,    12p2de,    12p21693f#g3a,    16p6gab>dcced

RESUME RESUME

RESUME  0
RESUME  NEXT

RESUME  J!'ne

Continues  program  execution  after  an  error  recovery  procedure  has  been

performed.

Any  one  of  the  four  syntaxes  shown  above  may  be  used,  depending  upon
where  execution  is  to  resume:

8-124          Reference

-/

.RE

-



RESUME  or  RESUME  0

RESUME  NEXT

RESUME  /c."e

- Execution       resumes       at       the
statement  that  caused  the  error.

Execution       resumes       at       the
statement   immediately   following
the  one  that  caused  the  error.

Execution  resumes  at  the  Jj."e.

A  RESUME  statement  that  is  not  in  an  error-handling  routine  causes  a
"RESUME  without  error"  error  message  to  be  generated.

RETURN RETURN  [/!'ne]

Returns  execution  control  from  a  subroutine.

The  /!.ne  in  the  RETURN  statement  acts  as  with  a  GOTO.     If  no  //."e  is

given,   execution  begins  with  the  statement  immediately  following  the  last
executed  GOSUB  statement.

Amiga  Basic  includes  the  RETURN  /!.ne  enhancement  that  lets  processing
resume at a line that has a number or label.   Normally,  the program returns
to  the  statement  immediately  following  the   GOSUB   statement  when  the
RETURN  statement  is  encountered.    However,  RETURN  J!.ne  enables  the
user  to  specify  another  line.    This  permits  you  more  flexibility  in  program
design.     This   versatile   feature,   however,   can   cause  problems   for  untidy

programmers.     Assume,   for   example,   that  your  program   contains  these
fragments  of  a  program:

Reference          8-125



15    MOUSE    ON

10   0N   MOUSE   GOSUB    1000

20   FOR   I   =   1   TO   10

PROGRAM   LINE

200   HEM   PROGRAM   RESUMES    HERE

1000    'FIRST   LINE   0F   SUBROUTINE

1050   RETURN   ZOO

If mouse  activity  takes  place  while  the  FOR...NEXT  loop  is  executing,  the
subroutine is performed,  but program  control  returns to  line  200  instead  of
Completing the  FOR...NEXT loop.    The  original  GOSUB  entry  is  canceled
by  the  RETURN  statement,  and  any  other  GOSUB,  WHILE,  or  FOR  that
was  active  at  the  time  of  the  trap  remains  active.     But  the  current  FOR
context  also  remains  active,  and  BASIC  issues  the  "FOR  without  NEXT"
error  message.

See  also:     GOSUB

RIGHTS RIGHTS(XS,I)

Returns  the  rightmost  I  characters  of  string  XS.

If  I  is  greater  than  or  equal  to  the  number  of  characters  in  XS,  it  returns
XS.   If I = 0,  the  null  string  (length  zero)  is  returned.    I  can  range  from  0 to
32767.

8~126          Reference

`-

-

-,



ilra

-,

`-

RND

Example:

The  following  routines  show  the  use  of  RIGHTS  in  extracting  a  field  from
within  a  string  containing  several  fields.

'THIS   ROUTINE   EXTRACTS   THE   ADDRESS   a:    FROM    STRING   RECORDS

RECORDS   =    .'n:JOHN   JONES    s§:534012   99   a:3633    6TH   sT   wAco,Tx"
LENGTH   =   LEN(RECORDS)                                                      `DETERMINE   LENGTH   0F`   RECORD

OFFSET    =    INSTR(RECORDS."a:")                              'FIND   START   0F   ADDRESS   a:
RIGHTCHAR   =   LENGTH   -   OF'FSET   -    1
ADDRESSS    =    RIGHTS(RECORDS,RIGHTCHAR)     'EXTRACT   ADDRESS   FROM   RECORDS

PRINT   ADDRESSS

The  following  is  displayed  on  the  screen:

3633    6TH    ST   WACO,TX

See  also:     LEFTS,  MIDS

RND[(X)]

Returns  a  random  number  between  0  and  1.

RND  issues the  same  sequence  of random  numbers  each  time  a  program  is
run  unless  you  specify  a  RANDOMIZE  statement.

•      X  <  0  always  restarts  the  same  sequence  for  any  given  X.

•      X  >  0  or  X  omitted  generates  the  next  random  number  in  the
sequence.

`      X  =  0  repeats  the  last  number  generated.

Reference          8-127



Examl)le:

In  the  following  example,  RND  produces  random  dimensions  and  screen
locations  for  graphics  images.

FOR   I    =   1   TO   40

X   =    INT(RND*620)               'SET   HORIZONTAL   LOCATION   OF    CENTER

Y   =   INT(END*200)              'SET   VERTICAL   LOCATION   0F   ENTER
RADIUS    =    40*RND                 'SET   A   RANDOM   RADIUS

CIRCLE     (X,Y)  .RADIUS    'DRAW   A    CIRCLE

NEXT   I

See  also:    RANDOMIZE

'EE

`-

`-/

RSET

RUN

RSETstring-variable--string-expression

Moves  data from memory to  a random file buffer in preparation  for  a  PUT
statement.

See  "LSET"  for  a  discussion  of  both  LSET  and  RSET.

RUN  ['''ne]

RUN /j./e7tome [ , R]

Executes  the  program  currently  in  memory.

If the  Jz.ne  is  specified,  execution begins  on  that  line.    Otherwise,  execution
begins  at  the  first  line  of  the  program.

With the second form of the  syntax,  the named file is loaded from disk into
memory  and  run.    If  there  is  a  program  in  memory  when  the  command
executes,  a  requester  appears  permitting  the  program  to  be  saved.

In  the  second  syntax,   the  /I.Jer}cime  must  be  that  used  when  the  file  was
saved.

8-128          Reference



`-

`-

--

SADD

SAVE

RUN  closes   all   open  files   and   deletes  the   current   contents   of  memory
before  loading  the  designated  program.     However,  with  the  R  option,   all
data  files  remain  open.

SALDD(string  expression  )

Returns   the   address   of   the   first   byte   of   data   in   the   specified   string
expression.

This value  is only dependable until another string allocation occurs because
subsequent string allocations may  cause  existing strings to move  in memory.
SADD is typically used to pass the address of a  string to  a machine language
Program.

Avoid  using VARPTR  (strings  )  since  the  format  of  string  descriptors  may
change  in  the  future.

Example:

CALL       Prompt(SADD("How   many"+CHRS(0)))

See  also:    VARPTR

SAVE   Lf!.Jenc}me[,A]]

SAVE   Lf!.Jenc}me[,P]]

SAVE   Ifj.Jenc.me[,B]]

Saves  a  program  file.

The  /(.Jenczme   is   a   quoted   string.      If   a   filename   already   exists,   BASIC
overwrites  the  file.    If  you  don't  specify /!./enczme,  BASIC  prompts  you  for
the  name  of  the  file  to  save,

The   A   option   saves   the   file   in  ASCII   format.      If  the   A   option   is   not
specified,  Amiga Basic saves the  file in a compressed binary format that  can
also be  specified with the  a  option.   ASCII format takes  more  space  on the

Reference          8-129



disk,   but   some   programs   require   that   files   be   in   ASCII   format.      For
instance,  the MERGE command requires an ASCII format file.  Application

programs  may  also  require  ASCII  format  in  order  to  read  the  file.

The  P  option  protects  the  file  by  saving  it  in  an  encoded  binary  format.
When a protected  file  is later  RUN  (or loaded with  LOAD),  any  attempt to
list  or  edit  it  will  fail.

SAY SAY    "5'fr!.7tg", [VARPTR  (P%(0)]

Translates  a  list  of codes  you  specify  into  a  voice  delivering  audible  speech
of  any  language.

The sJrj.ng contains a list of pfeoneme codes.    (Phonemes are units of speech
composed   of   the   syllables   and   words    of   a   spoken   language.)       The
mode-c}rrc}y,   if  present,   is  an  integer  array  of  at  least   9   elements.     The
specifications  you  make  in  the  elements  define  the  characteristics  of  the
voice  that  is  speaking.    If   mocJe-c2rrc}y,  is  not  an  integer,  a  type  mismatch
error  occurs.

You  can  construct phoneme  codes using the  TRANSLATES  function  or by
following  the  directions  given  in  Appendix  H.

The  following table  gives  the  values  you  can  specify  in  P%  to  describe  the
characteristics  of  the  voice  that  is  to  speak;  if  you  don't  specify  P%   (it  is
optional),  the  default  values  indicated  in  the  table  are  in  effect.

Argument           Element #          Description

pitch

8-130          Reference

Base pitch for the voice,  in hertz.   Specify a
value  between  65  and  320.    The  default  is
110   (normal  male  speaking  voice).

-

EE

`-J



`-

-

\,.

Argument

inflection

rate

VOIce

tunlng

volume

channel

Element #

1

Description

Modulation.    Choose  one  of  two  values:

0      Inflections  and  emphasis  of  syllables

(default) .

1      Monotone  (robot-like).

Speaking  rate  for  the  voice,   in  words  per
minute.     Specify  a  value  between  40  and
400.    The  default  is   150.

Gender.    Choose  one  of  two  values:

0      Male  voice  (the  default)

1      Female  voice

The   sampling   frequency,   in   hertz.      This
element    controls    the    changes    in    vocal

quality.      Specify   a   value   in  the   range   of
5000  (low  and  rumbly)  to  28000  (high  and
squeaky).    The  default  is  22200.

Volume.     Specify   a  value  between   0   (no
sound)   and   64   (loudest).     The   default  is
64.

Channel     assignment    for     voice     output.
Channels   0   and   3   go   to   the   left   audio
output,   and   channels   1   and   2   go  to   the
right audio output.   Specify one  of the code
numbers    from   the    Channel    Assignment
Code  table  that  follows  this  table.

The  default  code  is   10,  which  assigns  any
available  left/right  pair  of  channels.

Reference          8-131



Argument           Element #          Description

mode                      7

control                   8

8-132          Reference

Synchronization mode.   Specify either  0  or
1,  as  described  below.

0      Synchronous   speech   output.       Amiga

Basic  waits  for  the   completion  of  the
current     execution     of     SAY     before
processing  further  commands.    This  is
the  default  value.

1      Asynchronous  speech  output.     Amiga
Basic begins  executing the  current  SAY
statement      and      then      immediately
resumes          processing          subsequent
commands.

Narrator    device     control    mode.         This

parameter   intructs   Amiga   Basic   how   to
process   multiple   SAY   statements   during
asynchronous  speech  output;  that  is,  when
Array(7)=1.     Specify  one  of  the  following
integers:

0      Process      normally.            Amiga      Basic
finishes      executing     the      first      SAY
statement     and     then     executes     the
second  one.    This  is  the  default  mode.

1      Stop  speech  processing.     Amiga  Basic
cancels  the  previous  statement.

2      Override    processing.         Amiga    Basic
immediately   interrupts   the   first   SAY
statement    and    executes    the    second
One.

\-

```

\/



Channel Assignment Codes

Channel(s)

0  and  2
3  and   1
3  and  2
either  available  left  channel
either  available  right  channel
either  available  left/right  pair  of  channels  (the  default)
any  available  single  channel

ER

--

`-

Example,

FOR   J    =    0    to    8:       READ   HOW%(J):    NEXT    J
TEXTS   =   "dhihs   ihz   yohr   (ahmiy5gah   per5sinul   kumpyuw5ter)    spiy4kihnx.  "
SAY    TEXTS,HOW%

SAY   TRANSLATES    ("Hi   there,    how   are   you?")
DATA   ilo , 0 , 250 , 0 , 22200 , 64 ,10 , 0 , 0

See  also:    TRANSLATES

SCREEN
SCREEN  CLOSE SCREEN  screen-id  ,  width,  height,  depth,  mode

SCREEN  CLOSE  screen-I.cZ

The   SCREEN   statement   defines   the   dimensions   of   a   new   screen,   the
number  of colors  it can hold,  and  the  screen  resolution.    SCREEN  CLOSE
closes  the  screen.

In  creating  the  screen,   SCREEN  allocates  private  memory  for  a  bit  map.

Reference          8-133



The  SCREEN  CLOSE  statement  releases  memory  allocated  to  the  screen
identified  by  screen-I.d.

The   scree„-!.d   is   a   number   from    1   to   4   which   identifies   the   screen;
WINDOW statements include  a  corresponding screen-!.c!   that identifies the
screen  in  which  a  window  is  to  appear.

The  w!.c7ffe   is  the  width  of  the   screen   in  pixels.      Specify  a   value   from   1
through  400.

The  Ae!.gAf  is  the  height  of  the  screen  in  pixels.     Specify  a  value   from   1
through  640.

The depfA is the number of bit planes  associated with the  screen.   The  value

you  specify  (1,  2,  3,  4,  or  5)  determines  the  number  of  colors  that  can  be
displayed  on  the  screen,  as  shown  in  the  following  table.

Value                   Number  of
Colors

The   mode   determines   the   pixel   width   of   the   screen    (320   pixels   per
horizontal  line  for  low  resolution  and  640  pixels  for  high  resolution)   and
whether the  screen is to be !'„ferJaced.   Normally,  you specify low  resolution
for    home    television    screens,    and    high    resolution    for   high-resolution
monochrome  and  RGB  monitors.

An  interlaced  screen  doubles  the  number  of  horizontal  lines  appearing  on
the  screen.    For  example,  in  interlaced  mode,   400  lines  normally  fill  the
screen;  in  non-interlaced  mode,  200  lines.

The   table   below   shows   the   values   you   can   specify   for   mode,   and   the
resulting  screen  produced.

8-134          Reference

EIE

ORE

`-



Mode Screen  Produced

Low  resolution,  non-interlaced.
High  resolution,  non-interlaced.
Low  resolution,  interlaced.
High  resolution,  interlaced.

Example:

SCREEN    1,320,ZOO,5,1

WINDOW   2 ,  "Lines" ,  (10,10) -(270,170)  ,15 ,1

SCROLL

`-/

SCROT.L  rectangle,  delta-x,  delta-y

Scrolls  a  defined  area  in  the  current  Output  window.

The  rec/czng/e  has  the  form  (xl,yl)-(x2,y2),  which  specifies  the  bounds  of
the  rectangle  in  the  current  Output  window  that  is  scrolled.

The de/fci-x parameter indicates the  number  of pixels  to  scroll  right.    If the

parameter  is  a  negative  number,  the  rectangle  scrolls  left.

The  cJe/fcz-y  parameter  indicates  the  number  of  pixels  the   rectangle   will
scroll  down.    A  negative  value  will  scroll  the  rectangle  up.

The  SCROLL  statement  is  most  effective  when  the  image  to  be  scrolled  is
smaller  than  the  defined  rectangle,  and  the  areas  being  affected  have  no
background.

Reference          8-135



SGN

Indicates  the  value  of  X,  relative  to  zero.

If  X>0,  SGN(X)  returns  1.

If  X=O,   SGN(X)  returns  0.

If  X<0,  SGN(X)  returns  -1.

SGN(X)

Example:

In  the  following  example,   SGN  evaluates   a  negative,   zero,   and  positive
value  respectively.

PRINT    SON(-299)
PRINT   SCIN    (499   -   499)
PRINT   SON    (8722)

The  following  is  displayed  on  the  screen:

-1
0
1

SHARED SHA\RED  variable-list

Makes  specified  variables  within  a  subprogram  common  to  variables  of the
same  name  in  the  main  program.

The var!.czb/e-J!.sf is a list of variables,  separated by  commas,  that  are  shared
by the subprogram and the main program.   If the variable to be shared is  an
array,   its   name   must  be   followed   by  parentheses.      If  the   value   of  the
variable  is  altered  within  the   subprogram,   the  value   is   changed  for  that
variable  in  the  main  program,  and  vice  versa.

8-136          Reference

`-

\-/

`-



EE

RE

SIN

The   SHARED   statement  may   only  be  used   within   a   subprogram.      A
subprogram  can  have  several  SHARED  statements  for  different  variables,
just like  a program can have several DIM statements for  different variables.

It is advisable to  group all of one subprogram's  SHARED  statements  at the
top  of  the  subprogram.

See  also:    DIM  SHARED

SIN(X)

Returns  the  sine  of  X,  where  X  is  in  radians.

The  evaluation  of  this  function  is  performed  in  single  precision  when  the
argument  is  in  single  precision  and  in  double  precision  when the  argument
is  in  double  precision.

Example:

PRINT    ''SINE   0F   1    IS    "    SIN(1)
PRINT    "SINE   0F   loo   IS    "   SIN(loo)
PRINT    ''SINE   0F   1000   IS    "   SIN(1000)

The  following  is  displayed  on  the  screen:

SINE   0F   1   IS       .841471
SINE   0F   loo   IS   -.5063657
SINE   0F   1000   IS       .8268798

See  also:    COS,  TAN

SLEEP SLEEP

Causes  a  BASIC  program  to  temporarily  suspend  execution  until  an  event
occurs that Amiga BASIC is interested in,  such as a mouse click,  key press,
ribject  collision,  menu  select,  or  a  timer  event.

Reference          8-137



Example:

LOOP :

IS   =   INKEYS
IF    IS   =    ''X"    THEN    STOP
SLEEP

GOTO   LOOP

SOUND SOUND  /regwency,   cJwrczf!.on   [,    [vo/wine   ][,   voz.ce   ]]

SOUND  WAIT

SOUND  RESUME

Produces  a  sound  from the  speaker,  builds  a  queue  of  sounds,  and  plays  a

queue  of  sounds.

The  SOUND  WAIT statement  causes  all  subsequent  SOUND  statements  to
be  queued  until  a  SOUND  RESUME  statement  is  executed.    This  can  be
used to synchronize the sounds coming from the four audio  channels  on the
Amiga   (known  as  voj.ces.)     The  queue  has  a  finite  limit,   so  if  too  many
SOUND   statements   are   queued  without  a   SOUND   RESUME  statement,
BASIC  generates  an  out-of-memory  error.

The /reqwency  can be  an  integer  or fixed point constant  of single  or  double

precision.    The  minimum  frequency  you  can  specify  is  20  hertz,   and  the
maximum  is  15000  hertz.    If  you  specify  a  frequency  of  less  than  20  hertz,
BASIC  produces  a  20-hertz  sound;  if  you  specify  more  than   15000  hertz,
BASIC  produces  a   15000-hertz  sound.

The  following  tables  shows  four  octaves  of  notes  and  their  corresponding
frequencies.    Note  that  doubling the  frequency produces  a  note  one  octave
higher.

8-138          Reference

I-

`\J

`-



*Middle  C

IRE

`-

Frequency

130.81

146.83

164.81

174.61

196.00

220.00

246.94

261.63

293.66

329.63

349.23

392.00

440.00
493.88

Frequency

523.25

587.33

659.26

698.46

783,99

880.00

977.70
1046.50

1174.70

1318.50

1396.90

1568.00

1760.00

1975.50

The  dwrczfj.on  can  be  any  numeric  expression  from  0  to  77.    It  determines
how  long  the  sound  will  last.    One  second  is  represented  by  a  duration  of
18.2.   Therefore,  the  number  18.2  as  a  duration  argument would produce  a
tone that lasts one  second.   The maximum argument of 77 would produce  a
sound  that  lasts  about  4.25  seconds.

The  following  table  relates  tempo  to  durc}fj.on.

Tempo Beats  per  Minute             Duration

very  slow         Larghissimo                   40-60
Largo
Larghetto
Grave
Lento
Adagio

slow                    Adagietto
Andante

60-66

66-76

76-108

28 .13-18 . 75

18.75-17.05

17.05-14.8

14.8-10.42

Reference          8-139



medium          Andantino
Moderato                        108-120

fast                     Allegretto
Alleggro
Vivace

Veloce
Presto

120-168

very  fast           Prestissimo                      168-208

10.42-9.38                     ~J

9.38-6.7

6.7-5.41

A SOUND  statement isn't played until the  complete  duration  of a previous
SOUND  statement.

The vojume can range from  0  (lowest volume)  to  255  (highest volume).  The
default  volume  is   127.

The  vo!.ce  indicates  which  of  four  Amiga  audio  channels  the  sound  will
come  from.    Specify  0  or  3  for the  audio  channel  to  the  left  speaker  and  1
or  2  for  the  right  speaker.    The  default  is  0.

Example:

SOUND   440,20,loo,0

See  also:    WAVE

SPACES SPACES(X)

Returns  a  string  of  spaces  of  length  X.

The  expression  X  is  rounded  to  an  integer  and  must  be  in  the  range  0  to
32767.

8-140          Reference

`-

`-



ERE

I-

ERE

SPC

Example:

In   the    following    example,    SPACES    creates   two    indention    variables
containing  blanks;   the   variables   force   text   to   the   appropriate   indented
columns  when  displayed  with  PRINT.

INDENT5S   =    SPACES(5)

INDENTIOS   =    SPACES(10)

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
END

"Level   1   Outline  Heading"
INDENT5S   "Level   2   Heading"
INDENT5S    "Level   2   Heading"
INDENTIOS    "Level   3   Heading
INDENTIOS    "Level   3   Heading"
"Level   1   Heading"

The  following  is  displayed  on  the  screen:

Level   1   Outline   HeaLdin8
Level   2   Heading
Level   2   Heading

Level   3   Heading
Level   3   Heading

Level   1   Heading

See  also:     SPC

SPC(I)

Generates  spaces  in  a  PRINT  statement.    I  is  the  number  of  spaces  to  be
skipped.

SPC  can  be  used  only  with  PRINT and  LPRINT  statements.    I  must  be  in
the   range   0  to   255.     A  semicolon   (;)   is   assumed  to   follow  the   SPC(I)
function.

Reference          8-141



Example:

FOR   I    =    1   TO   5
PRINT    SPC(I)     "I    AM    1    COLUMN   TO   THE   RIGHT   OF   THE   ABOVE   LINE"

NEXT   I

The  following   is  displayed  on  the  screen:

I    AM    1    COLUMN   TO   THE    RIGHT    0F`   THE   ABOVE   LINE

I    AM   1    COLUMN   TO   THE   RIGHT   OF   THE   ABOVE   LINE
I    AM    1    COLUMN   T0   THE    RIGHT    OF   THE   ABOVE    LINE

I    AM    1    COLUMN   TO   THE   RIGHT    0F`   THE    ABOVE   LINE

See  also:    PTAB,  SPACES,  TAB

SQR SQR(X)

Returns  the  square  root  of  X.

X  must  be  >=  0.

The  evaluation  of  this  function  is  performed  in  single  precision  when  the
argument  is  in  single  precision  and  in  double  precision  when  the  argument
is  in  double  precision.

Example:

PRINT    ''VALUE                              SQUARE   ROOT"
FOR   I   =   1   T0   10

PRINT      I,SQR(I)
NEXT    I
END

8-142          Reference

\-

`-

EE



I-I

`-

-I

The  following  is  displayed  on  the  screen:

VALUE                     SQUARE   ROOT

1

1. 414214
1. 732051

2
2 . 238068

a . 44949
2 . 645751
2 . 828427
3
3 .162278

STICK                                                                                                                           STICK (n)

Returns  the  direction  of joysticks,

The  n  value  determines which  of two joysticks  (A  or  8)  you  want  direction
information  and  on  which  coordinate   (X  or  Y),  as  follows:

n  value       Information  Returned

Joystick  A  in  X  direction
Joystick  A  in  Y  direction
Joystick  8  in  X  direction
Joystick  8  in  Y  direction

STICK returns  one  of the  following values  to  indicate  direction,  as  follows:

Value

1

0
-1

Meaning

Movement  is  upward  or  to  the  right.
The  stick  is  not  engaged.
Movement  is  downward  or  to  the  left.

Reference          8-143



STRIG                                                                                                                      STRI G (n)

Returns  the  current  status  of  a  joystick.

This  function  returns  the  information  shown  in  the  table  below  depending
on  what  you  specify  for  „.

n Value

STRIG(0)

STRIG(1)

STRIG(0)

STRIG(1)

STOP

Information  Returned

Returns  1  if the  button  on  joystick  A  was  pressed
since  the  last  time  STRIG(0)  was  invoked.
Otherwise,  returns  0.

Returns  1  if  the  button  on  joystick  A  is  currently

pressed.    Otherwise,  returns  0.

Returns   1  if  joystick  8  was  pressed  since  the  last
time  STRIG(0)  was invoked.    Otherwise,  returns  0.

Returns  1  if  the  button  on  joystick  8  is  currently

pressed.    Otherwise,  returns  0.

STOP

Terminates  program  execution  and  returns  to  immediate  mode.

STOP   statements   can   be   used   anywhere   in   a   program   to   terminate
execution.    STOP  is  often  used  for  debugging.

The  STOP  statement  does  not  close  files.

Execution  can  be  resumed  by  issuing  a  CONT  command.

See  also:    CONT

8-144         Reference

`-

`-

-



STRS
ERE

•-,

IRE

STRS (X)

Returns  a  string  representation  of the  value  of  X.

The  string  returned  includes  a  leading  space  for  positive  numbers  and  a
leading  minus  sign  for  negative  numbers.

STRS   is   not   used   to   convert   numbers   into   strings   for   random   file
operations.   For that purpose,  use the  MKIS,  MKSS,  and MKDS  functions.

See  also:    VAL

STRINGS STRINGS(I,J)

STRINGS(I,XS)

The  first syntax returns a string of length  I whose  characters  all have  ASCII
code  J.

The  second  syntax  returns  a  string  of  length  I  whose  characters  are  all  the
first  character  of  XS.

Example:

PRINT    STRINGS(10,  "C")
PRINT    STRINGS(10,  "#")
PRINT    STRINGS(10,37)

The   following   is   displayed   on   the   screen:

cccccccccc
##########

qfavmcav,avflmoflo

Reference          8-145



SUB
END  SUB
EXIT SUB

SUB    swbprogrc}m-ncime [ ¢ormc]/-pctrc}mefer-j!.sf) ] STATIC

END  SUB

EXIT  SUB

Starts,  ends,  and  exits  from  a  subprogram.

The  swbprogrcz77t-nczme  can  be  any  valid  Amiga  Basic  identifier  up  to  30
characters in length.   This name cannot appear in any other SUB statement.

The   /ormcz/-pczrczme/er-Jj.s/    can    contain   two    types    of   entries:    simple
variables  and  array  variables.    The  subscript  number  that  is  optional  after
array  variables  should  contain  the  number  of  dimensions  in  the  array,  #of
the  actual dimensions  of the  array.   Entries  are separated by  commas.   The
number of parameters  is  limited  only by the  number  of characters  that  can
fit  on  one  logical  BASIC  line.

STATIC  means  that  all  the  variables  within  the  subprogram  retain  their
values  from  the  time  control  leaves  the  subprogram  until  it  returns.

The   body   of  the   subprogram,   the   statements   that   make   it   up,   occurs
between  the  SUB  and  END  SUB  statements.

The   END   SUB   statement  marks  the   end  of  a   subprogram.     When  the
program  executes  END  SUB,  control  returns to the  statement following the
statement  that  called  the  subprogram.

The  EXIT SUB statement routes  control out of the  subprogram  and back to
the  statement  following  the  CALL  subprogram  statement.

Before  BASIC starts  executing a program,  it  checks  all  subprogram-related
statements.     If  any  errors  are  found,  the  program  doesn't  execute.     The
mistakes  are  not trappable  with  ON ERROR,  nor do they have  error  codes.
The   following   messages   can   appear   in   an   error   requester   when   the
corresponding  mistake  is  made:

8-146          Reference

-

`-

-



`-

-

`-

SWAP

Tried   to   declare   a   SUB   within   a   SUB.

SUB   already   defined.

Missing   STATIC   in   SUB   statement.

EXIT   SUB   outside   of   a   subprogram.

END   SUB   outside   of   a   subprogram.

SUB   without   an   END   SUB.

SHARED   outside   of   a   subprogram.
A  thorough  discussion  of  the  use  and  advantages  of  subprograms  can  be
found  in  Chapter  6,   "Advanced  Topics."

Example,

SUB   NextLine(win)    STATIC
SHARED   iDraw, iErase
WINDOW   OUTPUT    win

DrawLine   iDra.w,1
DrawLine   iErase,O

END    SUB

See  also:    CALL,  SHARED

S`^lA`P  variable,variable

Exchanges  the  values  of  two  variables.

Any   type   variable   may   be   swapped    (integer,    single   precision,    double

precision,  string),  but the two  variables  must be  of the  same  type  or  BASIC
issues  a  "Type  mismatch"  error  message.

If  the   second   variable   is   not   already   defined   when   SWAP  is   executed,
BASIC  issues  an  "Illegal  function  call"   error  message.

Reference          8-147



Example:

FIRSTS   =    ''FRED''
LASTS   =    "JONES"

PRINT   FIRSTS   SPC(1)    LASTS
SWAP   FIRSTS,LASTS
PRINT   FIRSTS   SPC(1)    LASTS

The  following  is  displayed  on  the  screen:

FRED   JONES
JONES   FRED

SYSTEM

TAN

8-148

SYSTEM

Closes  all  open  files  and  returns  control  to  the  Workbench.

When  a  SYSTEM  command  is  executed,  all  open  files  are  closed.

The same result can be  achieved by selecting the  Quit item from the  Project
menu.

When  SYSTEM  is  executed  in  the  program  or  in  the  Output  window  or
from the  Quit selection on the Project menu,  the interpreter checks to see if
the  program  in  memory  has  been  saved.     If  it  hasn't  been,   a  requester
appears  to  prompt  the  user  to  save  the  program.

TAN(X)

Returns  the  tangent  of  X  where  X  is  in  radians.

The  evaluation  of  this  function  is  performed  in  single  precision  when  the
argument  is  in  single  precision  and  in  double  precision  when  the  argument
is  in  double  precision.

Reference

`-

`-

`-



`-

iEB

`-

Example:

'Tangent  request  program
START :
INPUT    "Enter   a   number   ",    NUMBER
PRINT    "Tangent   of    "      NUMBER    "    is    "   TAN(NUMBER)
INPUT   "If  you  have   another  number,   enter  y   ",   ¥ORNS
IF   YOENS   =    "y"    COTO   START
END

The  following  is  an  example  of  the  results  produced  by  these  statements:

Enter   a   numbel`   1.777
Tangent   of     1.777      is   -4.780848
If  you  have  another  number,   enter  y  n

See  also:     COS,   SIN

TIMES TIMES

The  function  retrieves  the  current  time.

The   TIMES    function   returns    an    Sight-character    string   in   the    form
hh..mm..ss,   where   Aft   is   the   hour   (00   through   23),   mm   is   minutes   (00
through  59),  and  ss  is  seconds  (00  through  59).

Example:

The  following  example  shows  the  use  of  TIMES  in  displaying  the  time  of
day.

PRINT   TIMES                                'PRINT   CURRENT   TIME   IN   COMPUTER

Here  is  an  example  of  the  output  produced  by  these  statement.

08 : 00 : 40

Reference          8-149



TIMER ON
TIMER OFF
TIMER STOP

TIMER  ON
TIMER  OFF

TIMER  STOP

TIMER

The statements  enable,  disable,  and  suspend  event trapping based  on time,

The   function   retrieves   the   number   of   seconds   that   have   elapsed   since
midnight.

The  TIMER  ON  statement  enables  event  trapping  based  on  time.     This
allows you to alter the flow of the program based on the reading of the timer
by  using  the  ON  TIMER...GOSUB  statement.

The  TIMER  OFF  statement  disables  ON  TIMER  event  trapping.     Event
trapping  stops  until  a  subsequent  TIMER  ON  statement  is  executed.    The
TIMER  STOP  statement  suspends  TIMER  event  trapping.    Event  trapping
continues,    but    BASIC    does    not    execute    the    ON    TIMER...GOSUB
statement   for   an   event   until   a   subsequent   TIMER   ON   statement   is
executed.

The  TIMER  function  can  be  used  to  generate  a  random  number  for  the
RANDOMIZE  statement.   It can  also  be  used  to  time  programs  or parts  of
programs.

See  also:     ON  TIMER,  and  "Event  Trapping"   in  Chapter  6,   "Advanced
Topics . „

Example,

ON  TIMER(2)  GOSUB  Timeslice    'Invoke  Timeslice  every  2  seconds
TIMER  ON

8-150          Reference

-

`-

`-



TRANSLATES
ilzi

E=|`

vczrj.cibJe  =  TRANSLATES /"sfr!.ng")

Translates  English  words  into  phonemes,  from  which  the  SAY  statement
can  produce  audible  speech  on  the  Amiga.

The a/r!."g contains the words that are to be translated and,  after  execution,

the  vczrc.czb/e  contains  the  phoneme  string.    The  result  returned  to  vczr!.czbJe
cannot  exceed  32767  characters.

Example:

AS   =   TRANSLATES    ("There's   no   place   like   home.  ")
X%   =    SAY(AS)

See  also:     SAY

TRON TROFF TRON

TROFF

Traces  the  execution  of program  statements.

The Trace  On option in the  Run menu  is the  same  as the TRON statement.

As an aid in  debugging,  the TRON statement  (executed in either immediate
or program execution mode or selected from the Run menu)  enables a trace
flag.    The  currently  executing  statement  is  highlighted  with  a  rectangle  in
the  List  window,  if  a  List  window  is  visible.

If  there  is  more  than  one  statement  on  a  line,  each  statement  is  run  and
highlighted   separately.       The   trace   flag   is   disabled   with    the   TROFF
statement,   the   Trace   Off  menu   option,   or   when   a   NEW   command   is
executed.

Reference          8-151



UB0UND UBOUND(c}rrc}y-nc2me[,dc.me7ts!.on])

Returns  the  upper  bounds  of  the  dimensions  of  an  array.

See  "LBOUND"  for  a  discussion  of  both  LBOUND  and  UBOUND.

UCASES UCASES   (scrc."g-e:*press!.o„)

Returns  a  string  with  all  alphabetic  characters  in  upper  case.

This   function   makes   a   copy   of   the   sfr;.ng-express!.o„,    converting   any
lowercase  letters  to  the  corresponding  uppercase  letter.

The  UCASES  function provides  you with  a way to  compare  and  sort  strings
that  have  been  entered  with  different  uppercase  and  lowercase  formats.
For  example,  if  you  had  a  program  line,

INPUT    "Do   you   want   to   continue"    ,ANSWERS,

the user might  enter,  "YES",  "Yes",  "yes",  "Y",  or  "y".    You  could  route

program   control  in  the   next   statement  by   testing  the   first   letter   of  the
UCASES  of the  ANSWERS  against  "Y".    This  makes  different  affirmative
responses   of  different  users   work  in  the  program.      Another  use   of  the
UCASES  function  is  when  you  have  a  form  entry  program.

The   person   or   people   putting   in   form   data   may   not   consistently   use
uppercase  format.    For  example,  a  user  might  enter  the  names  "atlanta",
"AUSTIN",   and  "Buffalo".     If  a  normal  BASIC  program  to  alphabetize

names  sorted  these  three,  they  would  be  ordered  "AUSTIN",   "Buffalo'',
and  finally,  "atlanta",  because  when  strings  are  sorted  they  are  compared
based on their ASCII  character numbers.   The ASCII character number for
"A"  is  lower  than  that  for  "8",  but  all  uppercase  letters  come  before  the

lowercase  letters,  so  the  character  "8"  comes  before  the  character  "a".    If

you sort based on the  UCASES  representation  of the  strings,  the  results  are
alphabetically  ordered.

8-15 2         Reference

IRE

`-

`-



-VAL

ERE

Example:

as=UCASES(as)
IF  as="Y"  THEN  Response=1
IF  as="N"  THEN  Response=2
IF  as="C"  THEN  Response=3

Here  is  another  example:

AS   =    ''AUSTIN"
BS   =   "aLtlanta"
CS   =    "WaxAhachlE"
PRINT   AS,BS,CS
PRINT   UCASES(AS)  ,UCASES(BS)  ,UCASES(CS)

Notice  the  difference  in  output,   shown  below,   between  the  two   PRINT
statements :

AUSTIN                        at lanta                  WaxAhachlE
AUSTI N                              ATLANTA                       WAXAHACHI E

VAL(XS)

To  return the  numerical  value  of  string  XS.    The  VAL  function  also  strips
leading  blanks,  tabs,  and  line feeds  from  the  argument  string.

VAL  is  not  used  to  convert  random  file  strings  into  numbers.     For  that
purpose,  use  the  CVI,  CVL,  CVS,  and  CVD  functions.

See  also:     STRS

VARPTR VARPTR(vctr!.c2bJe-"czme)

Returns    the    address    of    the    first    byte    of    data    identified    with    the
vczrj.czb/e-#clme.      A   value   must   be   assigned   to   the   vcir!.czbJe-nczme   before
execution  of VARPTR.    Otherwise,  BASIC  issues  an  ``Illegal  function  call"
error  message.     Any  type  variable  name  may  be  used   (numeric,   string,
array).      For   string  variables,   the   address   of  the   first  byte   of  the   string

Reference          8-153



descriptor is  returned.   The  address returned is  a  number in the  range  0  to
16777215.          For     further     information,     see     Appendix     D,     "Internal
Representation  of  Numbers."

Use VARPTR to obtain the  address of a variable  or array to be passed to  an
assembly language subroutine.   A function  call of the  form VARPTR(A(0))
is  usually   specified  when  passing  an  array,   so  that  the  lowest-addressed
element  of  the  array  is  returned.

Note

Use  the  SADD  function  to  obtain  the  address  of  a  string.

All simple variables  should be  assigned before  calling VARPTR for  an  array
element,  because the  addresses of the  arrays change whenever  a new  simple
variable  is  assigned.

PEEK,     POKE,     SAI)D,    LEN

Example,

'    FILL    ARRAY   WITH    MACHINE    LANGUAGE    PROGRAM

DIM    CODE%(50)
1=0
I NFOL00P :

READ   A    :     IF    A    =    -1    THEN   MACHINEPROG:

CODE%(I)     =   A:     I       =    I    +    1:    GOTO    INFOL00P:

MACHINEPROG:

X%   =    10:     Y7o   =    0

SETYTOX=VARPTR ( CODE% ( 0 )  )

CALL    SETYTOX  (X%,VARPTR(Y%)  )

PRINT   Y%
END

DATA   &H4E58 , &H0000 , &H206E , &HO008 , &H30AE , &H000C , &H4E5E

DATA   &H4E75,-1

8-154          Reference

\-

`-

iE



`--

-,/

WANE                                                                                            V\lANE voice ,  wave-clef inition

Defines  the  shape  of  a  sound  wave  for  a  specified  audio  channel.

The WAVE statement adds versatility to the  SOUND statement.   By using a
number array to  define the  shape  of a  sound wave to be played through the
speaker.   you  can  produce   more  specific  types  of  sound.     You   specify   a
height number in each element of the array.   The height numbers,  when put
together,  define  a  curve;  that  curve  is  the  shape  of  the  wave.

The vo!.ce indicates  from which of four Amiga audio  channels the  sound will
come  from.    Specify  0  or  3  for  the  audio  channel  to  the  left  speaker  and  1
or  2  for  the  right  speaker.

The    wczve-de//.n!./i.on    defines    the    shape    sound    wave    for    vo!.ce.        The
wave-definition can be  SIN or the name  of an array of integers with at least
256  elements.    Each  element  in  the  array  must  be  in  the  range  of  -128  to
127.

To  save   space,   use  the   ERASE  statement  to  delete   the  wave-definition
array  after  the  WAVE  statement  is  executed.

Example,

DEFINT   A-Z
D"  Timbre(255)
FOR      1=0   TO   255

READ   Timbre(I)
NEXT    I

WAVE    O,SIN

WAVE    1,Timbre
WAVE   2.Timbre
WAVE    3,Timbre

Reference          8-155



WHILE...WFND WHILE  e;rpress!.on   [sfcifemer!fs]  WEND

Executes a series of statements in a loop as long as a given condition is true.

If  the  express!.o%  is  true   (that  is,  it  evaluates  to  a  non-zero  value),  then
sfczfeme7tfs  are  executed until the WEND  statement is  encountered.   BASIC
then returns to the WHILE statement and re-evaluates the express!'on If it is
still true,  the process  is  repeated.    If it  is  not  true,  execution  resumes  with
the  statement  following  the  WEND  statement.

WHILE...WEND  loops  may be  nested  to  any  level.    Each  WEND  matches
the  most  recent  previous  WHILE  that  has  not  been  completed  with   an
intervening  WEND.    An  unmatched  WHILE  statement  causes  a  "WHILE
without WEND"  error message  to be  generated,  and  an unmatched  WEND
statement    causes    a    "WEND    without    WHILE"    error    message    to    be

generated.

Warning

Do  not  direct  program  flow  into  a  WHILE...WEND  loop  without  entering
through  the  WHILE  statement,  as  this  will  confuse  BASIC's  program  flow
control.

Example:

`    THIS    PROGRAM   CONVERTS   DECIMAL   VALUES   T0   HEXADECIMAL

ANSWERS= ''Y ''

WHILE     (ANSWERS="Y")

INPUT    "ENTER   DECIMAL    NUMBER    ",     DECIMAL

PRINT    ''HEX    VALUE   0F    "    DECIMAL    "IS    "    HEXS(DECIMAL)
PRINT    "OCTAL    VALUE   OF    "       DECIMAL    "IS    "    OCTS(DECIMAL)

INPUT    "D0   YOU   WANT   T0   CONVERT   ANOTHER   NUMBER?        ",     ANSWERS

ANSWERS    =    UCASES(ANSWERS)

WEND

END

8-156          Reference

EE

`-

`-



WIDTH-'

-

`-

WIDTH  ow/pwf-dev!.ce.   [s!.ze]   [,pr!.nf-zone]

WIDTH  #/!'/enwmber,   [s!.ze]   [,pr!.nf-zone]

WIDTH   [sj.ze]   [,pr!.nf-zone]

WIDTH  LPRINT  [s!.ze]   [,pr!`nf-zone]

The   statement  sets  the  printed  line  width   and  print  zone  width  in  the
number  of  standard  characters  for  any  output  device.

The  octfpttf-dev!.ce  may  be  ``SCRN:",   "COM1:",   or   "LPT1:",   and  if  not
specified  is  assumed  to  be  ``SCRN:".

The integer s!.ze is the number of standard characters that the named output
device  line  may  contain.    However,  the position  of the  pointer  or the print
head,  as  given  by the  POS  or  LPOS  function,  returns  to  zero  after position
255.   In Amiga's proportionally spaced fonts,  the standard width for screen
characters is the equivalent of the width of any of the numerals  0 through  9.
The  default  line  width  for  the  screen  is  255.

If the s!.ze  is  255,  the  line  width  is  "infinite";  that is,  BASIC never inserts  a
carriage  return  character.

The /!.Jenwmber is a numeric expression that is the number of the file that is
to  have  a  new  width  assignment.

The pr!."f-zone argument is the value,  in standard characters, to be assigned
for  print  zone  width.     Print  zones  are  similar  to  tab  stops,   and  they  are
forced  by  comma  delimiters  in  the  PRINT  and  LPRINT  statements.

If  the  device  is  specified  as  "SCRN:",  the  line  width  is  set  at  the  screen.
Because   of  proportionally   spaced  fonts,   lines   with  the   same   number   of
characters  may  not  have  the  same  length.

If the  output  device  is  specified  "LPT1:",  the  line  width  is  set  for  the  line

printer.   The WIDTH LPRINT syntax is an alternative way to  set the printer
width.

Reference          8-157



When  files  are  first  opened,   they  take  the  device  width  as  their  default
width.     The  width  of  opened  files  may  be   altered  by  using  the   second
WIDTH  statement  syntax  shown  above.

For   detailed   information   on   generalized   device   I/0,    see    Chapter    5,
"Working  With  Files  and  Devices."

See  also:    LPOS,  LPRINT,  POS,  PRINT

WINDOW         WINDOW    ttJ;.ndow-I.d  [, [fj.fJe] [, [recfclngJe] [, [fype//,screen-!.d]]]]

WINDOW  CLOSE  wc.ndow-!.d

WINDOW  OUTPUT  wc.ndow-;.d

WINDOW(n/

The statements create an Output window,  close an  Output window,  or cause
the named window to become the  current  Output window without making it
the  active  window  (front  and  highlighted).

The  WINDOW  function  returns  information  about  the  current  window,

The  WINDOW  statement  performs  the  following  functions:

•       Creates and displays a new  Output window,  and brings it to the
front  of  the  screen.

•       Makes  the  window  current.    That  is,  you  can  use  statements
such  as  PRINT,  CIRCLE,  and  PSET to  write  text  and  graphics
to  the  window.

To  make  an  existing  window  current,  without  forcing it  to  the  front  of  the
screen,  use  the  WINDOW  OUTPUT  statement.

The w!.ndow-I.d is a number from  1 to N that identifies the window.  Window
1  is  the  Output window that  appears  when  BASIC  is  started,  therefore  you
should  specify  2  or  higher  if  you  want  to  make  a  new  window.

8-158          Reference

`-

`-

EE



`-

'-

The  f!.Cze is  a string expression that is  displayed in the window's Title  Bar,  if
it has  a  Title  Bar.    Window  1  displays  the  name  of the  current  program  or
"BASIC"  if  no  program  is  loaded  when  BASIC  initializes  it.

The  type  determines  the  options  available  to  the  user  in  manipulating  a
window  using  the  mouse.     The   type   also   determines  whether  a  window
appears   empty   or  re-displays   its   contents   once   it   reappears   after  being
covered  by  another  window.

The  following  table  shows  the  values  you  can  use  in  determining  type.

16

Meaning

Window   size   can   be   changed   using   the   mouse   and   Sizing
Gadget  in  the  lower  right-hand  side  of  the  window.

Window  can  be  moved  about  using  the  Title  Bar.

Window  can  be  moved  from  front  to  back  of  other  windows
using the  mouse  and  the  Back  Gadget  in  the  upper  right-hand
corner  of  the  window.

Window can be closed using the mouse and Close  Gadget in the
upper  left-hand  corner  of  the  window.

Contents  of window  reappear  after the  window  has  temporarily
been   covered   by   another   window.      BASIC   reserves   enough
memory  to  remember  the  contents  of  the  window.

Indicate  type  by  adding two  or  more  of the    values  in  the  above  table;  for
example,  specify  5  to  indicate  that  the  user  can  move  the  window  by  the
Title   Bar   and   change   its   size   through   the   Sizing   Gadget   in   the   lower
right-hand    corner  of  the  window.     Any  number  from  0  through  31  is  a
valid  type  specification.

Note:     If     you   specify  Type   1   and  Type   16   (for   a  total   of   17)   BASIC
reserves  enough  memory  for  the  window  to  grow  to  the  full  size  of  the
screen.    Otherwise,  BASIC  reserves  only  enough  memory  for  the  window

Reference          8-159



size you specify;  this specification consumes   a large  amount of memory.   If
the   memory   available   to   your  program   is   limited,   avoid   specifying  this
combination  in  the  fype    specification.

The  recfczngje  specifies  the  physical  screen  boundary  coordinates   of  the
created  window.     It  has  the  form   (xl,yl)-(x2,y2)   where   (xl,yl)   is  the
upper-left  coordinate  and'  (x2,y2)  the  lower-right  coordinate   (relative  to
the  screen).     If  no  coordinates  are  specified,  the  window  appears  at  the
current  default  for  that  window   (the  window-id's  current  values).     The
initial  defaults  are  for  a  full  screen.

The  scree„i.d  refers  to   a   screen   created  with   the   SCREEN   statement.
Specify  any  value  from   1  through  4;  the  default   (-1)   is  the  Workbench
screen.

WINDOW  CLOSE  window-id  makes  the  named  window  invisible.    If  the
current  Output  window  is  closed,  the  window  that  was  most  recently  the
current  output  and  is  still  visible  becomes  the  new  Output  window.

WINDOW   OUTPUT   w!.ndow-I.cJ   makes   the   named   existing   window   the
current   output   window   without   forcing   it   to   the   front   of   the   screen.
Statements   like   PRINT,   CIRCLE,   and   PSET  affect  this   window.      This
allows  direct  output   (like  text,   graphics,   and  so  forth)   to   a  background
window  without  changing  the  front  window.

Programs  using  multiple   Output   windows   require   information   about  the
status   and   size   of   an   Output   window   in   order   to   respond   to   different
situations.   The  WINDOW(n)  function  ( where n  is  a value  from  0  through
8)    provides  this  information;  the  information  returned  n  is  shown  in  the
table  below.

n  Argument

0

1

8-160         Reference

Information  returned

The  window-id  of the  selected  Output  window.

The  window-id  of the  current  Output  window.    This  is
the    window    to    which    PRINT    or    other    graphics
statements  send  their  output.

`-

`-

RE



-

I-`

n  Argument

2

3

4

Information  returned

The  width  of  the  currrent  Output  window.

The  height  of  the  current  Output  window.

The  x  coordinate  in  the  current  Output  window  where
the  next  character  is  drawn.

The  y  coordinate  in  the  current  Output  window  where
the  next  character  is  drawn.

The   maximum   legal   color   for   the    current    Output
window.

A   pointer   to   the   INTUITION   WINDOW    (see   the
rna.r\ual Intuition: The  Amiga  User Interface)  rec.orb tor
the  current  Output  window.

A pointer to the  RASTPORT  (see the manual  Jnfw!.fj.on..
The   Amiga   User   Interface)   record   tor   the   ourrer\t
Output  window.

Example:

WINDOW   1,  "Lines " ,  (10 ,10) -(270 , 70)  ,15
WINDOW   2 ,  "Polygons " ,  (310 ,10) -(580 , 70)  ,15
WINDOW   3 ,  "Circles " ,  (10, 95) -(270,170)  ,15
WINDOW   OUTPUT    1

Note:     In  the  above  example,   WINDOW   1   ("Lines")   covers  the  Amiga
Basic  Output  window.

WRITE WRITE   [e;rpress!.on-J!.sf ]

Outputs  data  to  the  screen.

If    the    expressz.on-J!.sf    is    omitted,    a    blank    line    is    output.        If    the
expressj'o%-J{'sf  is  included,  the  values  of  the  expressions  are  output  to  the

Reference          8-161



screen.    The  expressions  in  the  list  may  be  numeric  or  string  expressions.
They  must  be  separated  by  commas.

When the printed items are output,  each item is separated from the last by a
comma.    Printed  strings  are  delimited  by  quotation  marks.    After  the  last
item   in   the   list   is   printed,    BASIC   inserts    a    carriage    return/line feed
sequence ,

WRITE  outputs  numeric  values  without  the  leading  spaces  PRINT  puts  on
positive  numbers.

Example:

A   =    80    :    a   =   90    :    CS   =    "The   End"
WRITE   A,B,CS

PRINT   A,B,CS
END

Note  the  difference  between  the  WRITE  and  PRINT  output,  shown  below.

80,90,  "The   End"
80                                 90                                 The   End

WRITE# V\lF(ITF3#  f ilenumber ,  expression-list

Writes  data  to  a  sequential  file.

The /I./enwmber  is  the  number  under  which  the  file  was  opened  with  the
OPEN  statement.    The  expressions  in  express!.o7t-/!.ff  are  string  or  numeric
expressions.    They  must  be  separated  by  commas.

The   difference   between   WRITE#  and   PRINT#  is   that   WRITE#   inserts
commas between the items as they are written to the file and delimits strings
with   quotation   marks.      Therefore,   it   is   not   necessary   to   put   explicit
delimiters  in  the  list.    A  carriage  return/1inefeed  sequence  is  inserted  after
the  last  item  in  ejrpress!.on-J!.sf  is  written  to  the  file.

8-162          Reference

`-

`-

-



See  also:    OPEN,  PRINT#,  WRITE

Example:

LET   AS   =    "32"    :    LET      8   =   -6    :    LET   CS   =    "Rat.hleen"
OPEN    "0",     #1,     ''INFO"

WRITE    #1.AS;B;CS

CLOSE    #1
OPEN    „I„,#1,„INFO„

INPUT    #1,AS,B,CS
PRINT   AS,B,CS

CLOSE    #1

END

This  example  produces  the  following  output:

32                           -6                           Kat.hleen

`-

EE
Reference          8-163



`-

`-

-



`-

`-
A-1Appendices

Appendices

Appendix A:   Character Codes

ASCII  Character Codes



Dec        Hex       CHR

HT
LF
VT
FF
CR
SO
SI
DLE
DCI
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESCAPE
FS
GS
RS
US
SPACE
!

Dec=decimal,      Hex=hexadecimal(H),       CHR=character,      LF=LineFeed,
FF=FormFeed,  CR=Carriage  Return,  DEL=Rubout

A-2         Appendices

I.-



Non-ASCII  Character Codes`-

`-

II..bI,. I . 0 0 I 0 . I 1 1 1 1 i 1 1 1

0 0 0 0 1 t •1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

00 01 02 03 04 05 06 07 0'8 09 10 11 12 13 14 1.5
• b, . b'

0 0 0 0 00 SP 0 @ P P NBSP
a

A D
\a a

0 0 0 1 01 I 1 A Q a q 1
+ A N a fi

0 0 1 0 02 '' 2 a R b r ¢
2

A
\0

a a
0 0 1 1 03 # 3 C S C S £ 3 A 6 a a
0 1 0 0 04 S 4 D T d t EI

'A
6 a a

0 1 0 1 05 % 5 E U e U ¥ I a 6 a 6
a 1 1 0 06 & 6 F V i V II a A

.a.
a3 6

0 1 1 1 07 ' 7 G W 9 W § 9 ¢

1 0 0 0 08 ( 8 H X h X E ® i ¢
1 0 0 1 09 ) 9 I Y 1 y © 1

E
\U e tJ

1 0 1 0 10 * J Z J Z
a

E 0 e a
1 a 1 1 11 + K I k { << >> E 0 e |J

1 1 0 0 12 < L \ 1 I

- 1/4 I
-U

1 0
1 1 0 1 13 - M.. I in } SHY

1A! I Y i y
1 1 1 0 14 > N

- n
- ® 3/4 ^I

P 1 P
1 1 1 1 15 / ? 0 a 6 I f3 1 y

Appendices         A-3



Appendix 8:  Error Codes and Error Messages

Operational Errors

Message

NEXT  WITHOUT  FOR

A  variable   in   a   NEXT  statement   does   not   correspond   to   any

previously  executed,  unmatched  FOR  variable.

SYNTAX  ERROR

A  line  is  encountered  that  contains  some  incorrect  sequence  of
characters    (such   as   an   unmatched   parenthesis,    a   misspelled
command  or    statement,  or  incorrect  punctuation).

RETURN  WITHOUT  GOSUB

A   RETURN   statement   is   encountered   for   which   there   is   no
previous,  unmatched  GOSUB  statement.

OUT  OF  DATA

A   READ   statement   is   executed   when   there   are   no   DATA
statements  with  unread  data  remaining  in  the  program.

ILLEGAL  FUNCTION  CALL

A  parameter  that  is  out  of  range  is  passed  to  a  math  or  string
function.    This  error  may  also  occur  as  the  result  of  a  negative  or
unreasonably  large  subscript.

A-4         Appendices

`-

`-

``-



`-

`\,

RE

10

OVERFLOW

The    result    of    a  calculation  is  too  large  to  be  represented  in
Amiga  BASIC's number format.  If under flow  occurs,  the result is
zero  and  execution  continues  without  an  error.

OUT  OF  MEMORY

A program is too large,  has too  many FOR loops  or  GOSUBs,  too
many  variables,  or  expressions  that  are  too  complicated.

UNDEFINED  LABEL

A line referenced in  a  GOTO,  GOSUB,  IF...THEN[...ELSE],  or
DELETE  statement  does  not  exist.

SUBSCRIPT  OUT  OF  RANGE

Caused  by  one  of  three  conditions:

1.     An  array  element  is  referenced  with  a  subscript  that  is
outside  the  dimensions  of the  array.

2.    An  array element is referenced  with  the  wrong number
of  subscripts.

3.     A  subscript  is  used  on  a  variable  that  is  not  an  array.

DUPLICATE  DEFINITION

Caused  by  one  of  three  conditions:

1.    Two  DIM  statements  are  given  for  the  same  array.

2.    A DIM  statement is  given for  an array  after the  default
dimension  of  10  has  been  established  for  that  array.

3.    An  OPTION  BASE  statement  has  been  encountered
after  an  array  has  been  dimensioned  by  either  default
or  a  DIM  statement.

Appendices         A-5



11

12

13

14

15

16

DIVISION  BY  ZERO

Caused  by  one  of  two  conditions:

1.     A   division   by   zero   operation   is   encountered   in   an
expression.       Machine   infinity   with   the   sign   of   the

numerator  is  supplied  as  the  result      of  the  division.

2.     The   operation   of   raising   zero   to   a   negative   power
occurs.      Positive   machine   infinity   is   supplied   as   the
result  of  the  exponentiation,  and  execution  continues.

ILLEGAL  DIRECT

A  statement  that  is  illegal  in  immediate  mode  is  entered  as  an
immediate  mode  command.    For  example,  DEF  FN.

TYPE  MISMATCH

A string variable name is  assigned a numeric value  or  vice  versa;  a
function   that   expects    a   numeric   argument   is    given    a   string
argument or vice  versa.   This  error  can  also  be  caused  by trying to
SWAP  single  precision  and  double  precision  values.

OUT  OF  HEAP  SPACE

The   Amiga   heap   is   out   of   memory.      The   situation   may   be
remedied by  allocating more  space  for the  heap  with  the  CLEAR
statement.    This  is  described  in   `CLEAR'  in  Chapter  7,   `BASIC
Reference . '

STRING  TOO  LONG

An   attempt   was   made   to   create   a   string   that   exceeds   32,767
characters.

STRING  FORMULA  TOO  COMPLEX

A  string  expression  is  too  long  or  too   complex.The   expression
should  be  broken  into  smaller  expressions,

A-6         Appendices

\-

`-

\-



17

18

19

20

21

22

23

`-

EE

CAN.T  CONTINUE

An  attempt  is  made  to  continue  a  program  that:

1.  Has  halted  due  to  an  error

2.  Has  been  modified  during  a  break  in  execution

3.   Does  not  exist

UNDEFINED  USER  FUNCTION

A    user-defined  function  is  called  before  the  function  definition
(DEF  statement)  is  given.

NO  RESUME

An error-handling routine is entered,  but it contains no  RESUME
statement.

RESUME  WITHOUT  ERROR

A  RESUME  statement  is  encountered  before  an  error-trapping
routine  is  entered.

UNPRINTABLE  ERROR

An  error  message  is  not  available  for  the  error  condition  which
exists.     This  is  usually  caused  by  an  ERROR  statement  with  an
undefined  error  code.

MISSING  OPERAND

An  expression  contains  an  operator  without  a  following  operand.

LINE  BUFFER  OVERFLOW

An  attempt  has  been  made  to   input  a  line  that  has  too  many
characters.

Appendices         A-7



26

29

30

35

36

37

38

FOR WITHOUT  NEXT

A   FOR   statement   is   encountered   without   a   matching   NEXT
statement.

WHILE  WITHOUT WEND

A  WHILE  statement  is  encountered  without  a  matching  WEND
statement.

WEND  WITHOUT WHILE

A  WEND  statement  is  encountered  without  a  matching  WHILE
statement.

UNDEFINED  SUBPROGRAM

A  subprogram  is  called  that  is  not  in  the  program.

SUBPROGRAM  ALREADY  IN  USE

A  subprogram  is  called  that  has  been  previously  called,  but  has
not   been   ended   or   exited.       Recursive   subprograms   are   not

permitted.

ARGUMENT  COUNT MISMATCH

The number of arguments in a subprogram CALL statement is not
the  same  as  the  number  in  the  corresponding  SUB  statement.

UNDEFINED  ARRAY

An  array  was  referenced  in  a  SHARED  statement  before  it  was
created.

39,  40,  41,  42,  43,  44,  45,  46,  47,  48,  and  49  UNPRINTABLE  ERROR

There  is  no  error  message  for  the  error  that  exists.

A-8         Appendices

`-

`-

`-



`-'

`-

`-

Disk Errors

Error
Code

50

51

52

53

54

Message

FIELD  OVERFLOW

A    FIELD    statement  is  attempting to  allocate  more  bytes  than
were  specified  for  the  record  length  of  a  random  access  file.

INTERNAL  ERROR

An internal malfunction has occurred in Amiga BASIC.  Report to
Commodore-Amiga   the   conditions   under   which   the   message
appeared.

BAD  FILE  NUMBER

A statement or command references a file with a file number that
is  not  OPEN  or  is  out  of  the  range  of  file  numbers  specified  at
initialization.

FILE  NOT  FOUND

A     FILES,     LOAD,     NAME,   or  KILL  command     or   OPEN
statement references a file that does not exist on the  current disk.

BAD  FILE  MODE

An    attempt  was  made  to:

1.  Use  PUT,  GET,  or  LOF  with  a  sequential  file.

2.  LOAD    a    random  access  file.

3.     Execute   an   OPEN  statement  with   a   file   mode   other
than  I,  0,  or  R.

Appendices         A-9



55

57

58

61

62

63

64

67

FILE  ALREADY  OPEN

A    sequential     output    mode   OPEN  is  issued  for  a  file  that  is
already  open  or  a  KILL  is  given  for  a  file  that  is  open.

DEVICE  I/0  ERROR

An  I/0  error  occurred  during  a  disk  I/0  operation.    It  is  a  fatal
error;  that is,  the  operating system  cannot recover from the  error.

FILE  ALREADY  EXISTS

The  filename  specified  in  a  NAME  statement  is  identical  to   a
filename  already  in  use  on  the  disk.

DISK  FULL

All  disk  storage  space  is  in  use.

INPUT  PAST  END

An   INPUT   statement   is   executed   after all the  data  in the  file
has   been   INPUT,   or for a null  (empty)  file.  To avoid this  error,
use  the  EOF  function  to  detect  the  end-of-file.

BAD  RECORD  NUMBER

In  a  PUT  or  GET  statement,  the  record  number  is  either  greater
than  the  maximum  allowed  or  equal  to  zero.

BAD  FILE  NAME

An    illegal    form    (for    example,    a    filename    with    too    many
characters)  is used  for the  filespec  with  a  LOAD,  SAVE,or  KILL
command  or  an  OPEN  statement.

TOO  MANY  OPENED  FILES

An  attempt  is  made  to  create  a  new  file  (using  SAVE  or  OPEN)
when  all  directory  entries  are  full.

A-10         Appendices

EE

EEz

-



68

70

73

74

-.-

EE

HE=

DEVICE  UNAVAILABLE

The  device  that  has  been  specified  is  not  available  at  this  time.

PERMISSION  DENIED  (DISK  WRITE  PROTECTED)

The  disk  has  a  write  protect  feature,  or  is  a  disk  that  cannot  be
written  to.

ADVANCED  FEATURE

UNKNOWN  VOLUME

A reference was made to a volume which has  not been mounted.

69,71-73,75,76,  78-255                       UNPRINTABLE  ERROR

There  is  no  error  message  for  the  error  that  exists.

Appendices         A-11



Errors Reported Before Program Execution Begins

Syntax  Error

A  line  is   encountered  that  contains   some   incorrect   sequence   of
characters    (such    as    an    unmatched    parenthesis,    a    misspelled
command  or    statement,  or  incorrect  punctuation),

IF  without  END  IF

ELSE/  ELSE  IF  /END  IF  without  IF

BLOCK  ELSE/END  IF  must  be  the  first  statement  on  the  line

FOR  without  NEXT

NEXT  without  FOR

WHILE  without  WEND

WEND  without  WHILE

Tried  to  declare  SUB  within  a  SUB

SUB  already  defined

Missing  STATIC  in  SUB  statement

EXIT  SUB  outside  of  a  subprogram

SUB  without  END  SUB

SHARED  outside  of  a  subprogram

Statement  illegal  within  subprogram

Too  many  subprograms

A-12         Appendices

`-

-

-



Appendix C: Microsoft BASIC Reserved Words

The  following  is  a  list  of  reserved  words  used  in  Amiga  Basic.    If  you  use

these  words  as  variable  names,  a  syntax  error  will  be  generated.

iE

-,'

EREB

ABS
ALL
AND
APPEND
AREA
AREAFILL
AS
ASC
ATN

BASE
BEEP
BREAK

CALL
CDBL
CHAIN
CHDIR
CHRS
CINT
CIRCLE
CLEAR
CLNG
CLOSE
CLS
COLLISION
COLOR
COMMON
CONT
COS

CSRLIN
CVD
CVI
CVL
CVS

DATA

FIELD                      LLIST
FILES                       LOAD
FIX                             LOG
FN                            LOCATE
FOR                          LOF
ERE                           LOG
FUNCTION           LPOS

DATES
DECLARE                  GET
DEF                                GOSUB
DEFDBL                      GOTO
DEFINT
DEFLNG                      HEXS
DEFSNG
DEFSTR                      IF
DELETE                      IMP

LPRINT
LSET

MENU
MERGE
MIDS
MKDS
MKIS
MKLS

DIM                                 INKEYS                    MKSS

EDIT
ELSE
ELSE  IF
END
EOF
EQV
ERASE
ERL
ERR
ERROR
EXIT
EXP

INPUT                     MOD
INSTR                      MOUSE
INT

NAME
KILL                        NEW

NEX
LBOUND                NOT
LEFTS                      OBJECT.AX
LEN                           OBJECT.AY
LET                           OBJECT.CLI
LIBRARY        OBJECT. CLOSE
LINE                         OBJECT.HI
LIST                          OBJECT. OF

Appendices         A-13



OBJECT.ON
OBJECT.PLANES
OBJECT.PRIORITY
OBJECT.SHAPE
OBJECT.START
OBJECT.STOP
OBJECT.VX
OBJECT.VY
OBJECT.X
OBJECT.Y
OCTS
OFF
ON
OPEN
OPTION
OR
OUTPUT

PAINT
PALETTE
PATTERN
PEEK
PEEKL
PEEKW
POINT
POKE
POKEL
POKEW
POS
PRESET
PRINT
PSET
PUT

A-14         Appendices

RANDOMIZE
READ
REM
RESET
RESTORE
RESUME
RETURN
RIGHTS
RND
RSET
RUN

SADD
SAVE
SAY
SCREEN
SCROLL
SGN
SHARED
SIN
SLEEP
SOUND
SPACES
SPC
SQR
STATIC
STEP
STICK
STOP
STRS
STRIG
STRINGS
SWAP

SUB
SYSTEM
TAB
TAN
THEN
TIME
TIMER
TO
TRANSLATES
TROFFTRO
TRON
UBOUND
UCASES
USING
USR

VA
VARPTR

WAIT
WAVE
WEND
WHILE
WIDTH
WINDOW
WRITE

XOR

`-

-

\-



`-

-'

-

Appendix D: Internal Representation
of Numbers

Amiga   Basic   uses   binary   math.       In   the   tables   that   follow,    internal
representation  is  expressed  in  hexadecimal  numbers.

Integers  in Amiga  Basic

Integers are represented by a  16-bit  2's complement signed binary number.

External                            Internal
Representation                Representation

-32768                                    8000
-1                                        FFFF
0                                                   0000
1                                                         0001

32767                                      7FFF

Binary Math

With the binary math pack,  the default type for variables is single precision,
and  built-in  mathematical  functions  perform  in  single  precision  or  double

precision.     Single  precision  is  much  faster  but   less  precise  than   double
precision.

Double  Precision

Eight  bytes  as  follows:  One  bit  sign  followed  by  11  bits  of  biased  exponent
followed by  53 bits  of mantissa  (including the  implied  leading bit  which  has
a value of  1) .   If the sign bit is  0,  the number is positive.    If the  sign bit is  1,
the  number  is  negative.    The  unbiased  exponent   (biased  exponent  -3FF
hex  or  -1023  decimal)  is  the  power  of  2  by  which  the  mantissa  is  to  be

Appendices         A-15



multiplied.    The  mantissa  represents  a  number  greater  than  or  equal  to   1
and  less  than  two.     Positive  numbers  may  be  represented  up  to  but  not
including  1.79   *   10  ^308.    The  smallest  representable  number  is  2.23   *   10
^-308.     Binary  double  precision  numbers  are  represented  with  up  to   15.9

digits  of  precision.

External
Representation

Internal
Representation

3FF0000000000000
BFF0000000000000
000xxxxxxxxxxxxx
4024000000000000
3FB9999999999999

Single  Precision

Four  bytes  as  follows:   One  bit  sign  followed  by   8  bits  of  biased  exponent
followed by  24  bits  of mantissa  (including the  implied  leading bit  which  has
a  value  of  1).  If the  sign bit  is  0,  the  number  is positive.    If the  sign  bit  is  1,
the  number  is  negative.    The  unbiased  exponent   (biased  exponent      -7F
hex,   -127   decimal)   is   the   power   of   2   by   which   the   mantissa   is   to   be
multiplied.    The  mantissa  represents  a  number  greater  than  or  equal  to   1
and  less   than   2.      Positive   numbers   may   be   represented   up   to   but   not
including  3.4   *   10  ^38.     The  smallest  representable  number  is   1.18   *   10^
-38.    Binary  single  precision  numbers  are  represented  with  up  to  7.2  digits

of  precision.

External
Representation

A-16          Appendices

Internal
Representation

3F800000
BF800000
00yxxxxx
41200000
3DCCCCCD

--

`-

`u



Appendix E: Mathematical Functions

The   derived   functions   that   are   not   intrinsic   to   Amiga   Basic   can   be
calculated  as  follows.

ERE

`-

Mathematical
Function

SECANT

COSECANT

COTANGENT

INVERSE
SINE

INVERSE
COSINE

INVERSE
SECANT

INVERSE
COSECANT

INVERSE
COTANGENT

HYPERBOLIC
SINE

HYPERBOLIC
COSINE

HYPERBOLIC
TANGENT

Ami8a
Basic  Equivalent

SEC(X)=1/COS(X)

CSC(X)=1/SIN(X)

COT(X)=1/TAN(X)

ARCSIN(X)=ATN(X/SQR(-X*X+1))

ARCCOS(X)=-ATN(X/SQR(-X*X+1))
+1.5708

ARCSEC(X)=ATN(X/SQR(X*X-1))
+SGN(SGN(X)-1) * 1. 5708

ARCCSC(X)=ATN(X/SQR(X*X-1))
+(SGN(X)-1) + 1. 5708

ARCCOT(X)=ATN(X)+1.5708

SINH(X)=(EXP(X)-EXP(-X))/2

COSH(X)=(EXP(X)+EXP(-X))/2

TANH(X)=(EXP(-X)/EXP(X)
+EXP(-X))*2+1

Appendices         A-17



Mathematical
Function

HYPERBOLIC
SECANT

HYPERBOLIC
COSECANT

HYPERBOLIC
COTANGENT

INVERSE
HYPERBOLIC  SINE

INVERSE
HYPERBOLIC  COSINE

INVERSE
HYPERBOLIC  TANGENT

INVERSE

HYPERBOLIC  SECANT

INVERSE

Ami8a
Basic  Equivalent

SECH(X)=2/(EXP(X)+EXP(-X))

CSCH(X)=2/(EXP(X)-EXP(-X))

COTH(X)=EXP(-X)/(EXP(X)
-EXP(-X))*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1))

ARCCOSH(X)=LOG(X+SQR(X*X-1)

ARCTANH(X)=LOG((1+X)/(1-X))/2

ARCSECH(X)=LOG((SQR(-X*X+1)
+1)/X)

ARCCSCH(X)
HYPERBOLIC  COSECANT                     =LOG((SGN(X) *SQR(X*X+1)+1)/X

INVERSE
HYPERBOLIC  COTANGENT

A-18         Appendices

ARCCOTH(X)=LOG((X+1)/(X-1))/2

RE

`-



--`

-

E=E]

Appendix F:  LIBRARY FORMAT

This  appendix  describes  the  mechanism  that  BASIC  uses  to  map  routine
names  to  routine  offsets  in  the  library's  jump  table.    It  is  intended  for  the
experienced programmer  who  needs  this  information  to  build  a  LIBRARY
of machine  language  routines  for  BASIC.    Since  many  routines  in  libraries
are   written  in   assembly  language   and  take  their   arguments   in  registers,
BASIC  also  requires  a way to  know the register calling conventions for  each
routine .

A special  disk file  that  must  exist  for  every  library to  be  attached to  BASIC
with   the   LIBRARY   statement   must   contain   the   information   described
above.     If  the  library  is  named  ":Libs/graphics.library",  then  this  special
file  is  named  ":Libs/graphics.bmap."    The  .bmap  extension  indicates  that
this  is  a  special  file.    The  format  of  a  ".bmap"  file  is  as  follows:

Routine  name:  n  ASCII  characters,  0-byte  terminated
Offset  into  jump  table:  signed   16-bit  integer,
Register  parameters:  n  bytes  terminated  with  a  0  byte  as  follows:

1  =  pass  this  parameter  in  register  do
2  = pass  this  parameter  in  register  dl
3  =  pass  this  parameter  in  register  d2
4  =  pass  this  parameter  in  register  d3
5  =  pass  this  parameter  in  register  d4
6  =  pass  this  parameter  in  register  d5
7  =  pass  this  parameter  in  register  d6
8  =  pass  this  parameter  in  register  d7
9  =  pass  this  parameter  in  register  ao
10  =  pass  this  parameter  in  register  al
11  =  pass  this  parameter  in  register  a2
12  =  pass  this  parameter  in  register  a3
13  =  pass  this  parameter  in  register  a4

Appendices         A-19



For routines that follow  C  calling conventions  and take their parameters  on
the  stack,  the  Register parameter  is  empty because  BASIC doesn't need  to              ~
pass  any  parameters  in  registers.

For  example,  if  a  library  contained  the  following  two  routines:

MoveTo(x   [do],   y[dl])    -library   offset   =   -24    (decimal)

ClearRast(pRast   Port    [ao]   -libl`aLry   offset   =   -30   (decimal)

then  a  hexidecimal  dump  of the  library's  "bmap"  file  would  look  like  this:

4DBF7665546FOOFFE8010200436C6561725261737400FFE20900

The  utility  program  "ConvertFd.bas"  on  the  Amiga  Basic  disk  produces  a
.bmpa  file  given  an  .fd  file  as  input.

`-

`-/
A-20         Appendices



~      AppendixG:  Asample program

Here  is  a  closer  look  at  picture.bas,  the  program  you  ran  in  the  practice
session.    The  bracketed  letters  are  for  your  reference  only.    They  do  not
appear  in  your  listing.

L``

E=lE

[A]    DEFINT   P-Z
[8]    DIM   P(2500)

[C]     CLS

[D]    LINE    (O,O)-(120,120)„BF

[E]    ASPECT      =    .1

[F]                    WHILE   ASPECT<20
[G]                    CIRCLE(60,60)  ,55,O„  ,ASPECT
[H]                     ASPECT   =   ASPECT*1.4

[1]                   WEND

[J]    GET    (O,O)-(127,127),P

[K]    CheckMouse:
[L]              IF   MOUSE(0)=O   THEN   CheckMouse

[M]             IF   ABS(X-MOUSE(1))    >   2   THEN   Movepicture
[N]             IF   ABS    (Y-MOUSE(2))    <3   THEN   CheckMouse
[0]   Movepict,ure:
[P]              PUT(X,Y)  ,P

[Q]               X=MOUSE(1)  :    Y=MOUSE(2)

[R]              PUT(X,Y)  ,P

[S]            COTO   checkMouse

The  following  section  describes  line  by  line  exactly  what  each  statement  in

picture.bas  does.

[A]  Basic will  recognize  variable  names beginning with the  letters  P through
Z  as  integers.

[8]   Creates  an  array  with  a  dimension  of  2500  elements.
[C]   Erases  the  Output  window.
[D]   Draws  a  rectangle  defined  by  points   (0,0)  and   (120,120)   and  filled.
[E]   Sets  the  variable  ASPECT  to  0.1.
[F]   Repeats  the  following  as  long  as  ASPECT  is  <20.
[G]  Draws  an ellipse with  center  (60,60),  radius  55,  color   0  (t)lue),  and  an

Appendices         A-21



aspect  ratio  =ASPECT.
Increases  the  value  of  ASPECT.

Exits  this  loop  when  ASPECT  >  =  20.
Copies  the  content  of  this  part  of  the  window  to  an  array  P.
Starts  a  routine  called  CheckMouse  to  check  the  mouse  status.
Waits  for  the  mouse  Selection  button  to  be  pressed.

If  the  mouse  has  moved  at  least  3  points  in  the  X  direction,  the

program  goes  to  Movepicture.
[N]   If  the  mouse  has  moved  at  least  4  points  in  the  Y  direction,  the

program  goes  to  CheckMouse.
[0]  Starts  a routine called  Movepicture to move the picture stored in  array

P.

[P]   Erases  the  picture  from  the  old  location.
[Q]   Sets  X  and  Y  to  the  new  coordinates  of  the  mouse.
[R]   Copies  the  picture  in  array  P  to  the  new  X,Y  location.
[S]   Goes  back  to  the  CheckMouse  routine.

A-22         Appendices

ERE

`-

EE



-

-

E=l

Appendix H:  Writing Phonetically
for the Say Command

This  appendix  describes  how  to  specify  phonetic  strings  to  the   Narrator
Speech  synthesizer   (through  the  SAY  command).     You   don't  need   any
previous experience with phonetics or with computer or foreign languages to
learn this procedure.   The only thing you need is  a good dictionary,  such  as
Webscer's  Tfo!.rc!  J"fernczf!.ona/,  to  look  up  the  pronunciation  of  words  you
feel  uncertain  about.    The  beauty  of  writing  phonetically  is  that  you  don't
have  to  know  how  a  word  is  spelled,  only  how  it  is  said.    Narrator  lets  you
write  down  the  English  words  that  come  out  of  your  own  mouth.

Narrator  works  on  utterances  at  the  sentence  level.    Even  if  you  only  want
to   say   only   one   word,   Narrator   treats   it   as   a   complete   sentence.      So,
Narrator  asks  for  one  of  two  punctuation  marks  to  appear  at  the  end  of
every sentence:  the period  (.)  and the  question mark  (?) .   If no punctuation
appears at the end of a string,  Narrator automatically appends a period to it.
The  period,  used  for  almost  all  utterances,  results  in  a  final  fall  in pitch  at
the  end  of  the  sentence.

The  question  mark,  used  only  at the  at the  end  of yes/no  questions,  results
in   a   final   fall   in   pitch.      So,   the   question,      "Do   you   enjoy   using   your
Amiga?"  takes  a  final  question  mark  because  the  answer  is  a  yes  or  a  no.
On  the  other  hand,  the  question,   "What  is  your  favorite  color?"   doesn't
take  a  question mark  and  is  followed by  a period,    Narrator  does  recognize
other  forms  of  punctuation,  discussed  later  in  this  appendix.

Spelling  Phonetically

Utterances   are   usually   written   phonetically   with   an   alphabet   of   sounds
called  the  I.P.A.   (International  Phonetic  Alphabet),  found  at  the  front  of
most  good  dictionaries.    Since  these  symbols  can  be  hard  to  learn  and  are
not   available   on   computer   keyboards,   the   Advanced   Research   Projects
Agency   (ARPA)   developed  Arpczbcf ,   a  way  of  representing  each   symbol

Appendices         A-23



with  one  or  two  upper  case  letters.    To  specify  phonetic  sounds,   Narrator
uses  an  expanded  version  of  Arpabet.

A phonetic  sound  or  a  phoneme  is  a  basic  speech  sound,  almost  a  speech
atom.      You   can   break   sentences   into   words,   words   into   syllables,   and
syllables into phonemes.   For example,  the word  "cat"  has three letters  and

(coincidentally)  three phonemes.   If you look at the table  of phonemes.  you
find  that  three  sounds  make  up  the  word  cat:    K,  AE,   and  T,  written  as
KAET.   The word  "cent"  translates  as  S,  EH,  N,  and  T,  or  SEHNT.    Note
that both words begin with c,  but because the  c says k in cat,  the phoneme k
is  used.    You  may  have  also  noticed that  there  is  no  C phoneme.    Phonetic
spelling  operates  on  a  very  inportant  concept:  Spell  it  like  it  sounds--not
like  it  looks.

Choosing  the  Right Vowel

Like  letters,  phonemes  are  divided into  vowels  and  consonants.    A vowel  is
a  continuous  sound  made  with  the  vocal  cords  vibrating  and  with  air  exiting
the  mouth   (rather  than  the  nose).     All  vowels  use  a  two-letter  code.     A
consonant  is  any  other  sound,  such  as  those  made  by  rushing  air  (like  S  or
TH)  or by interruptions in air  flow by  the  lips  and  the tongue  (like  8  or T) .
Consonants  use  a  one  or  a  two-letter  code.

Written  English  uses  the  five  vowels  a,  e,  i,  o,  and  u.    On  the  other  hand,
spoken  English  uses  more  than  15  vowels,  and  Narrator  provides  for  most
of them.   To  choose  a vowel properly,  first listen to  it.    Say the  word  aloud,

perhaps  extending the  desired  vowel  sound.    Then  compare  the  sound  you
are  making  to  the  vowel  sounds  in  the  example  words  to  the  right  of  the

phoneme list.   For example the  "a"  in  apple  sounds the  same  as the  "a"  in
cat  and  not  like  the  "a's"  in  Amiga,  talk,  or  made.    Note  that  some  of  the
example  words  in  the  list  don't  even  use  any  of the  same  letters  contained
in  the  phoneme  code,  for  example,  AA  as  in  hot.

Vowels   fall   into   two   categories:    those   that   maintain   the   same   sound
throughout     their     durations     and     those     that     change     their     sounds.
"Diphthongs"  are  the  ones  that  change.    You  may  remember  being  taught

that  vowel  sounds  were  either  long  or  short.     Diphthongs  are  long  vowels,
but they  are  more  complex than  that.    Diphthongs  ai.e  the  last  six  vowels  in

A-24         Appendices

RE

`-

EBB



EE

`-

-

the  table.    Say  the  word  "made"  aloud  very  slowly.    Note  how  the  a  starts
out  like  the   e   in  bet  but  ends  up  like  the   e  in  beet.     The   a  is  thus   a
diphthong  in  this  word  and  "EY"  represents  it.    Some  speech  synthesizers
make  you  specify  the  changing  sounds  in  diphthongs  as  separate  elements.
Narrator  assembles  the  diphthongal  sounds  for  you.

Choosing  the  RIght  Consonant

Phoneticians  divide  consonants  into  many  categories,  but  most  of them  are
not relevant.   To pick the  correct  consonant,  you  only have  to pay  attention
to  whether  it  is  voiced  or  unvoiced.     You  make  a  voiced  consonant  with

your  vocal  cords  vibrating  and  you  make  an  unvoiced  one  with  your  vocal
cords  silent.    Written  English  sometimes  uses  the  same  letter  combinations
to represent both.    Compare the  sound  of  "th"  in  thin  and then.    Note that

you  make  the  ``th"  sound  in  thin  with  air  rushing  between  the  tongue  and
the upper teeth.   In the  "th"  in then,  the  vocal cords  are  also  vibrating.  The
voiced  "th"  phoneme  is  DH,  the unvoiced  is TH.   So,  the phonetic  spelling
of  thin  is  THIHN  whereas  then  is  DHEHN.

A sound that is particularly  subject to  mistakes is voiced  and unvoiced  "s."
The  phonetic  spelling  is  S  or  Z,    For  example,  bats  ends  in  S  while  suds
ends  in  Z.    Always  say  words  aloud  to  find  out  whether  the  s  is  voiced  or
unvoiced.

Another   sound   that   causes   confusion   is   the   "r"   sound.      The   Narrator
alphabet  contains  two  r-like  phonemes:   R  under  the  consonants  and  ER
under  the  vowels.  If the  r  sound  is  the  only  sound  in  the  syllable,  use  ER.
Examples  of  words  that  take  ER  are  absurd,  computer,  and  flirt.     On  the
other  hand,  if  the  r  sound  preceds  or  follows  another  vowel  sound  in  the
syllable,  use  R.    Examples  of  words  that  take  R  are  car,  write,  or  craft.

Using  Contractions  and  Special  Symbols

Several   of  the   phoneme   combinations   that   appear  in   English   words   are
created  by  laziness  in pronunciation.    For  example,  in  the  word  connector,
the  first  o  is  almost  swallowed  out  of  existence,  so  the  AA  phoneme  is  not

Appendices         A-25



used  and  the  AX  phoneme  is  used  instead.     Since  spoken  English  often
relaxes vowels,  AX and IX phonemes occur frequently   before I,  in,  and n.

Narrator provides  a  shortcut  for  typing these  vowel  combinations.    Instead
of   spelling   "personal"    PERSIXNAXL,    Narrator   spells   it   PERSINUL.
Anomaly    becomes    UNAAMULIY    instead    of    AXNAAMAXLIY    and
combination changes  from  KAAMBIXNEYSHIXN to  KAAMBINEYSHIN.
To  decide  whether to  use  the  AX  or  IX  brand  of vowel  relaxation,  try  out
both  and  see  which  sounds  best.

Narrator  uses  other  special  symbols  internally  and  sometimes  inserts  them
into your input sentence or even substitutes them for part of it.   If you wish,
you can type  some of these  symbols in directly.   Probably the most useful is
the  Q  or  glottal  stop-an  interruption  of  air  flow  in  the  glottis.    The  word
Atlantic contains one between the t and the I.   Narrator already knows there
should  be  one  there  and  saves  you  the  trouble  of typing  it.    However,  you
may stick in  a  Q  if Narrator  should  somehow let a word  or  a  word pair  slip
by  that  would  have  sounded  better  with  one.

Using  Stress  and Intonation

Now that you've learned about telling Narrator what you want said,  it's time
to  learn  to  tell  it  how  you  want  it  said.    You  use  stress  and  intonation  to
alter  the  meaning  of  a  sentence,  to  stress  important  words,  and  to  specify
the   proper   accents   in   words   with   several   syllables.       All   this   makes
Narrator's  output  more  intelligible  and  natural.

To specify stress and intonation,  you use stress marks made up  of the single
digits    1-9   followed   by   a   vowel   phoneme   code.      Although   stress   and
intonation  are   different  things,   you   specify  them   with   a   single   number.
Among  other  things,  stress  is  the  elongation  of  a  syllable.     So,   stress  is  a
logical  term--either  the  syllable  is  stressed  or  it  is  not.    To  indicate  stress
on  a  given  syllable,  you  place  a  number  after  the  vowel  in  the  syllable.    Its

presence  indicates  that  Narrator  is  to  stress  the  syllable.    To  indicate  the
intonation,  you  assign  a  value  to  the  number.    Intonation  here  means  the

pitch  pattern  or  contour  of  an  utterance.

A-26         Appendices

\-

ERE

`-



`-

EE

The  higher the  stress  marks the  higher the potential  for  an  accent in pitch.
The contour of each sentence consists  of a quickly rising pitch gesture up to
the  first  stressed  syllable  in  the  sentence,  followed  by  a  slowly  declining
tone throughout the sentence,  and finally a  quick fall to the lowest pitch  on
the  last  syllable.    Additional  stressed  syllables  cause  the  pitch  to  break  its
slow  declining  pattern  with  rises  and  falls  around  each  stressed  syllable.
Narrator uses  a  sophisticated  procedure  to  generate  natural  pitch  contours
based  on  your  marking  of  the  stressed  syllables.

Using  Stress  Marks

You  place  the   stress   marks   directly  to  the  right  of  the   vowel  phoneme
codes.   For example,  the stress mark on the word cat appears after the  AE,
so the result   is KAE5T.   Generally,  there is no choice about the location of
the  number.     Either  the  number  should  go  after  a  vowel  or  it  shouldn't.
Narrator  does  not  flag errors  such  as  forgetting to  include  a  stress  mark  or

placing  it  after  the  wrong vowel.    It  only  tells  you  if  a  stress  mark  is  in  the
wrong  place,  such  as  after  a  consonant.     Follow  these  rules  to  use  stress
marks  correctly:

1.     Place  a stress  mark in  a  co"fe7tf word,  that is,  one that  contains
some  meaning.     Nouns,   action  verbs,   and   adjectives   are   all
content  words.  Tonsils,  remove,  and  huge  are  all  examples  of
words  that  tell  the  listener  what  they're  talking  about.    On  the
other   hand,   words   like  but,   if,   is,   and  the   are   not   content
words.   They are,  however,  needed for the sentence to function
and  so  are  called /u7tcf!.on  words.

2.     Always   place   a   stress   mark   on   the   accented   syllable(s)    of

polysyllabic     words,     whether     content     or     function.           A
polysylllabic  word  has  more  than  one  syllable.    "Commodore"
has   its   stress   (or   accent)   on  the   first   syllable   and   would  be
spelled   KAA5MAXDOHR.      "Computer"   is   stressed   on   the
second  syllable  spelled  KUMPYUW5TER.     If  you  aren't  sure
about  which   syllable   gets  the   stress,   look  the   word  up   in   a
dictionary.

Appendices         A-27



3.     If  more  than  one   syllable   in   a   word   receives   a   stress   mark,
indicate    the    primary    and    secondary    stresses    by    marking
secondary  stresses  with  a  value  of  only   1  or  2.     For  example,
the  word understood  has  its  first  and  last  syllables  stressed  with
stand   getting  primary   stress   and  un   getting  secondary   stress.
Thus  the  spelling  would  be  AHINDERSTAE4ND.

4.     Write  compound  words  like  baseball  or  software  as  one  word
but  think  of  them  as  two  words  when  assigning  stress  marks.
So,   spell   lunchwagon   as   LAH5NCHWAE2GIN.       Note   that
lunch  gets  a  higher  stress  mark  than  wagon  as  the  first  word

generally  gets  the  primary  stress.

Picking  Stress  Values

After you've picked  the  spelling and the  stress  mark positions  correctly,  it's
time  to  decide  on  stress  mark  values.     They  are  like  parts   of  speech  in
written  English.     Use  this  table  to  assign  stress  values:

Nouns                                  5
Pronouns                            3
Verbs                                   4
Adjectives                           5
Adverbs                              7
Quantifiers                         7
Exclamations                   9
Articles                                 0   (no  stress)
Prepositions                       0
Conjunctions                    0
Secondary  Stress            1,  sometimes  2

These  values  only  suggest  a  range.   For  example,   to  direct  attention  to   a

given  word,  you  can  raise  its  value;  if  you  want  to  downplay  it,  lower  its
value.   You  might  even  want  a  function  word to  be  the  focus  of  a  sentence.
For  example,  if  you  assign  a  value  of  9  to  the  word  "to"  in  the  sentence,

A-28         Appendices

`-

`-

-



-

EEB

''Plea.se   deliver   t,his   t,o   Mr.    Smit,h,"   you'll   indicat,e
t,hat   t,he   letter   should   be   delivered   t,o   Mr.    Smit,h   in
Person.

Using  Punctuation

In  addition  to  periods  and  question  marks,   Narrator  recognizes  the  dash,
comma,  and parentheses.   The  comma  goes  where  you  would  normally put
it  in  a  written  English  sentence  and  tells  Narrator  to  pause  with  a  slightly
rising pitch,  indicating that  there  is  more  to  come.    For  example,  you  may
find that you  can  add  more  commas than  you use  in  written  English to  help
set  off  clauses  from  each  other

The  dash  is  like  the  comma  except  that the  pitch  does  not  rise  so  severely.
Here's   a  rule   of  thumb:   Use   dashes  to   divide  phrases   and     commas  to
divide  clauses.     Parentheses    provide  additional  information  to  Narrator's
intonation  routine.  Put  them  around  noun  phrases  of two  or  more  content
words,  for  example  "giant yacht."   Parentheses  can be  particularly  effective
around  large  noun  phrases  like   "the  silliest  guy  I  ever  saw,"     They  help

provide  a  natural  contour.

Hints  for  Intelligability

Although  this  guide  should  get  you  off to  a  good  start,  the  only  sure  way  to

proficiency  is to  practice.    Follow  these  tricks  to  inprove  the  intelligibility  of
a  sentence:

1.     Polysyllabic      words      are      often      more      recognizable      than
monosyllabic  ones.     So   say   enormous  instead  of  huge.     The
longer  version  contains  information  in  every  syllable  and  gives
the  listener  three  times  the  chance  to  hear  it  correctly.

Appendices         A-29



2.      Keep sentences to an optimal length.   Write for speaking rather
than for reading.   Do not write  a sentence that cannot be  easily              \+
spoken  in  one  breath.    Keep  sentences  confined  to  one  idea.

3.     Stress  new  terms  highly  the  first  time  they  are  heard.

These techniques  are  but  a  few  of the  ways  to  enhance  the  performance  of
Narrator.  Undoubtedly,  you'll  find  some  of  your  own.    Have  fun.

Tables  of Phonemes

Vowels

Phoneme        Example     Phoneme     Example

AX  and  IX  should  never  be  used  in  stressed  syllables

Diphthongs

Phoneme        Example     Phoneme     Example

EY                     made             AY                 hide
OY                     boil                 AW                power
OW                    low                  UW                 crew

A-30         Appendices

`-

-



-

EE.

-,

Consonants

Phoneme        Exam|)le

Very

check
hole
but
dog
Commodore

Special  Symbols

Phoneme

DX  (tongue  flap)

QX  (silent  vowel)
RX

UL
UM
UN

Digits   1-9

Phoneme     Example

Example

pity

Pause
Car

(postvocalic  R  and  L)
-AXL
=AXM
=AXN

(contractions--see  text)

yellow
yellow
men
rush
thi

pleasure
then
judge
loch

Put
toy

guest

Phoneme  Example

Q                  kitt   en
(glottal  stop)

LX                call

IL               -IXL
IM               =IXM
IN                =IXN

syllabic  stress,   ranging  from  secondary  through
emphatic

period--sentence  final  character
question  mark--sentence  final  character
dash--phrase  delimiter
comma--clause  delimiter

parentheses--noun  phrase  delimiters   (see  text)

Appendices          A-31



`-

`-

`-



iE

`-

Index

ABS,    8-21
Amiga  command  key,    8-3
animation,

accelerating  objects,    8-89
bobs  and  sprites,    7-6,  7-8
causing  collisions,    8-90
COLLISION  function,    8-35,  8-37
creating  an  object,    7-2
confining  to  one  area,    8-89
defining  an  object,    8-92
defining  velocity,    8-95
locating  object  in  window,    8-96
making  object  visible,    8-91
OBJECT  statements,    8-89 -8-96
prioritizing,    8-92
starting  and  stopping  objects,    8-94
See  czJso   Object  Editor

AREA,    8-21
AREAFILL,    8-21
arrays '

declaring,    6-6
passing  elements  in,    6-7
using LB0UND,  UBOUND,    6-9
declaring,    8-48
argument  expressions,    6-7
shared,  static  varia.bles,    6-8

ASC,    8-22
aspect  ratio,

definition,    8-33
for  Amiga  monitor,    8-33
use  in  drawing  circles,  ellipse,    8-33

ATN,    8-23

baud  rates,  Amiga,    5-2
BEEP,    8-24
bobs,  defining,    7-6,  7-8
BREAK,

command.    8-24
in  event  trapping,    6-11
See  czJso  ON  BREAK

CALL,     command  description,    8-25
See  also  subprograms

calling programs  with  CHAIN,    8-28
CDBL,    8-28
CHAIN,    8-28
characters,  special,    8-3
CHDIR,    8-32
CHRS,    8-30
CINT,    8-31
CIRCLE,    8-32
CLEAR,

command  description,    8-33
allocating  memory  with,    6-14

CLNG,    8-38
CLOSE,    8-34
CLS,    8-35
COLLISION,

function  description,    8-35
Object  Editor  defaults,    7-2
in  event  trapping,    6-11
See  cz/5.o  ON  COLLISION

COLLISION  ON/OFF/STOP,    8-37
COLOR,    8-37
colors '

creating,    8-103
determining number  of,    8-134

See  czJso  graphics  commands
COM1:,    5-2
command  key,  AmigaL,    8-3
COMMON,    8-38
concatena.tion,    8-18
constants,

double-precision,    8-7
fixed-point,    8-6
floating-point,    8-6

hexadecimal,    8-6
integers,  short  and  long,    8-6
octal,    8-6
single-precision,    8-7
types  supported,    8-6

CONT,    8-39

Index         I-1



Continue,    3-10
conversion  of numeric,    8-10
Copy,    3-9
copy  key,    8-3
COS,    8-40
CSNG,    8-40
CSRLIN,    8-41
Cut,    3-9
cutkey,    8-3
CVD.    8-42
CVI,    8-42
CVL,    8-42
CVS.    8-42

DATA,    8~42
data  segment,

conserving  space  in,    6-14
definition,    6-13
using  FRE  with,    6-15

DATES,    8-43
debugging programs,    4-5
DECLARE  FUNCTION,    8-44
DEFFN,    8-45
DEFDBL,    8-46
DEFINT,    8-46
DEFLNG,    8-46
DEFSNG,    8-46
DEFSTR,    8-46
DELETE,    8-47
device  na.mes,    5-1
DIM,    8-48
division

byzero,    8-14
integer,    8-13

double-precision  constants,    8-7

Edit menu,    3-9
editing  a  program,  how  to,    4-1,  2-9
ELSE,    8-61
END,    8-49
END  IF,    8-61
END  SUB,    8-146

See  czJs.o  subprograms
EOF,    8-49
Erase,  in  Object  Editor  Tools  menu,    7-6
ERL,    8-50
ERR,    8-50
ERROR,    8-51
error  correction,    2-13

I-2         Index

event  tra.pping,
activating,    6-12
BREAK,    6-11
COLLISION,    6-11
MENU,    6-11
MOUSE,    6-11
0N..GOSUB,    6-11
overview,    6-10
suspending,    6-12
terminaLting,    6-12
TIMER,    6-11

EXIT  SUB,    8-146
exiting Amiga  Basic,    3-2
EXP,    8-52
expressions,    8-11

FIELD,    8-52
filenames,  valid,    5-3
FILES,    8-53
files '

opening,    5-5
saving,    5-5

files,  random,
accessing,    5-13
creating,    5-11
example,    5-15
overview,    5-10

files,  sequential,
a.dding  data,    5-9
creating,    5-7
overview,    5-6
reading data from,    5-9

FIX,    8-54
fixed-point  constants,    8-6
floating-point constants,    8-6
FOR,    8-54
FRE'

description,    8-56
in memory management,    6-15

function  keys,  Amiga,    8-3
functions,  types,    8-17

GET'
description,    8-56
for  ra.ndom  files,    8-56
for  screen  data,    8-56

GOSUB,    8-59
GOTO,    8-60,  8-61
graphics  commands ,

AREA   8-21

-

`-

\-



`-

EE

AREAFILL   8-21
CIRCLE   8-32
COLOR   8-37
LINE   8-72
PAINT   8-102
PALETTE   8-103
SCREEN   8-133

heap,    See  system heap
HEXS,    8-60
hexadecimal  constants,    8-6
high-resolution,  setting,    8-134

IF..GOTO,    8-61
IF..THEN..ELSE,    8-61
immediate  mode,    3-4
INKEYS,    8-64
INPUT,    8-64
INPUT#,    8-66
INPUTS,    8-66
|NSTR,    8-67
INT,    8-68
integers '

decla.ring,    8-9
short  and  long,    8-6

KILL,    8-68
KYBD:,    5-2

la.bels '
format and rules,    8-5

LB0UND,
description,      8-68
using  in  arrays,    6-9

LEFTS,    8-70
LEN,    8--70
LET,    8-70
LIBRARY,

description,    8-71
with  CALL,    8-27

LINE,    8-72
Line,  in  Object  Editor  Tools  menu,
LINE  INPUT,    8-72
LINE  INPUT#,    8-73
LIST,    command,    8-74
list  key,    8-3
List  window,    2-2

List  window,  selecting,    3-7
LLIST,    8-75
LOAD,  command,    8-75
loading a program,    3-3
LOG,    8-76
LOCATE,    8-76
LOP,    8-77
LOG,    8-77
loops,  nested,    8-55
low-resolution,  setting,    8-134
LPOS,    8-78
LPRINT,    8-78
LPRINT USING,    8-78
LPT1:,    5-2
LSET,    8-79

machine  language  programs,
ca.Iling,    8-26
using  SADD,    8-129
See  cZ/so  subprograms

MENU'
description,    8-79
in  event  trapping,    6-11
See  czZs'o  ON  MENU

menu bar,  displaying,    3-5
MENU  ON/OFF/STOP,    8-81
menus,

Edit,    3-9
Project,    3-8
Run,    3-9
Windows,    3-11

MERGE,    8-81
MIDS,    8-82
MKDS,    8-83
MKIS,    8-83
MKLS,    8-83
MKSS,    8-83
mode,  screen,    8-134
MOUSE'

description,    8-84
in  event  trapping,    6-11
See  c2/so  ON  MOUSE

MOUSE  ON/OFF/STOP,    8-87
mouse

position,    8-86
status,    8-85

NAME,    8-88
NEW,    8-88

Index         I-3



New'
in  Basic  menu,    3-8
in Object  Editor  File  menu,    7-5

NEXT,    8-54

Object  Editor,
purpose,    7-2
howtouse,    7-7
menus,    7-5
screen layout,    7-3 -7-5

OBJECT.AX,    8-89
OBJECT.AY,    8-89
OBJECT.CLIP,    8-89
OBJECT.CLOSE,    8-91
OBJECT.HIT,    8-90
OBJECT.OFF,    8-91
OBJECT.ON,    8-91
OBJECT.PLANES,    8-92
OBJECT.PRIORITY,    8-92
OBJECT.SHAPE,    8-92
OBJECT.START,    8-94
OBJECT.STOP,    8-94
OBJECT.VX,    8-95
OBJECT.VY,    8-95
OBJECT.X,    8-96
OBJECT.Y,    8-96
objec..s,  how  to  create,    7-7  -7-9
0CTS,    8-97
octal  constbnts,    8-6
0N  BREAK,    8-98
0N  COLLISION,    8-98
0NMENU,    8-98
0N  MOUSE,    8-99
0N  TIMER,    8~99
0N..GOSUB,  in  event  trapping,    6-11
OPEN,    8-100
Open,

in  Basic  File  menu,    3-8
in  Object  Editor  File  menu,    7-5

operators ,
arithmetic,    8-12
logical,    8-15
relational,    8-14,  8-18

OPTION  BASE,    8-102
Output window,    2-2,  3-6
Oval,  in  Object  Editor  Tools  menu,    7~6
overflow,    8-14

I-4         Index

PAINT,    8-102
Paint ,
in  Object  Editor  Tools  menu,    7-6

PALETTE,    8-103
parity,    5-2
Paste,    3-9
paste  key,    8~3
PATTERN,    8-105
PEEK,    8-106
PEEKL,    8-106
PEEKW,    8-106
Pen,  in  Object  Editor  Tools  menu,    7-6
POINT,    8-107
POKE,    8-107
POKEL,    8-108
POKEW,    8-108
POS,    8-109
PRESET,    8-109
PRINT,    8-110
PRINT  USING,    8-111
PRINT#,    8-117
PRINT# USING,    8-117
printer  device  name,    5-3
program  mode,    3-4
Project menu,    3-8
PSET,    8-119
PTAB,    8-120
PUT,

description,    8-120
for  random  files,    8-120
for  screen  data,    8-120

Quit,  in  Object  Editor  File  menu,    7-5

random
files,    5-10-5-16
GET,    8-56
PUT,    8-120

RANDOMIZE,    8-122
READ,    8-122
Rectangle,  in  Object  Editor  Tools  menu,    7-6
resolution,  screen,    8-134
REM,    8-123
RESTORE,    8-123
RESUME,    8-123

-.

-/

\J



-

==Ezi

-

RETURN,    8-125,  8-59
RIGHTS,    8-126
RND,    8-127
RSET,    8-128
RUN,  comma.nd,    8-128
Run menu,    3-9

SADD,    8-129
SAVE,    8-129
Save ,

in  Basic  File  menu,    3-8
in  Object  Editor  File  menu,    7-5

Save  As,
in  Basic  FIle  menu,    3-8
in  Object  Editor  File  menu,    7-5

saving a program,    3-3,  2-20
SAY,    8-130
SCREEN,

description,    8-133
using  system  heap,    6-14

SCREEN  CLOSE,    8-133
screen  mode,  setting,    8-134
SCRN:,    5-2
SCROLL,    8-135
scrolling  program  listings,    4-4,  2-8
selecting  text,    4-3
sequentia.1  files,    5-7  -5-10
SGN,    8-136
SHARED,    6-5,  8-136
Show  List  Window,    3-11
Show  Output  Wlndow,    3-11
SIN,    8-137
single-precision  constants,    8-7
SLEEP,    8-137
SOUND'

description,    8-138
using  system  heap,    6-14

space  in  stack,    8-56
SPACES,    8-140
space,  determining  system,    8-56
SPC,    8-141
speech,  creating,

with  SAY,    8-130
manually,    A-23
with  TRANSLATES,    8-151

sprites,    defining  in  Object  Editor,    7-6,  7-8
SQR,    8-142

stack,
conserving  space  in,    6-13
definition,    6-13
using FRE with,    6-15

Sta.rt,    3-10
start  run key,    8-3
starting Amiga  Basic,    3-2
STATIC,    6-5
Step  option,  in  debugging programs,    4-6,  3-10
STICK,    8-143
Stop'     3-10
STOP,    8-144
STRS,    8-145
STRIG,    8-144
STRINGS,    8-145
strings,    8-17
SUB,    8-156

See  czJso  subprograms
subprograms,

advantages,    6-2
calling,    8-25
delimiting,    6-5
referencing  arra.ys  in,    6-8
referencing in  CALL,    6-3
shared  va.riables  in,    6-8
static  variables  in,    6-8

Suspend,    4-6,  3-10
SWAP,    8-147
SYSTEM,    8-148
system  heap,

conserving  space  in,    6-14
definition,    6-14
using  FRE with,    6-15

TAN,    8-148
THEN,    8-61
TIMES,    8-149
TIMER,  in  event  trapping,    6-11
TIMER ON/OFF/STOP,    8-150
Trace  Off,    3-10
Trace on,    3-10
TRANSLATES,    8-151
TROFF,    8-151
TRON`

description,    8-151
in  debugging programs,    4-5

Index         I-5



UBOUND,
description,    8-68
using  in  arrays,    6-9

UCASES,    8-152

VAL,    8-153
variables,

declaring,    8-9
in  arrays,    8-10

VARPTR,    8-153

WAVE,
description,     8-155
using  system  heap,    6-14

I-6         Index

WEND,    8-156
WHILE..WEND,    8-156
WIDTH,    8-157
WINDOW'

function,    8-160
statement,    8-158
using  system  hea.p,    6-14

window'

creating,    8-158
getting  information  on,    8-160

Windows  menu,    3-11
WRITE,    8-161
WRITE#,    8-161

-

`_.

EE



/
-

`-

-/

Am!.gcz  Bcls'!.c..    Errata  for  Revision  A

6  December  1985

The  following  items  are  known  errata  to  the  Amiga  Basic  manual.
This   document   does   not   reflect   minor   typographical   errors   and
similar  mistakes.

Note:  Throughout   the  text,  references  to  "BASIC"  should  be  changed
to  "Amiga  Basic."

The  manual states that executable  files  have the  ".bas"  extension.    This
extension    is    valid,     but    not    required    with    Amiga    Basic.         The
accompanying  demo  programs  do  7tof  use  this  extension.

Page  No.             Description

1-4

2-2

2-3

Second  paragraph  should  be  changed  to  read  as  follows:

It    is    aLlso   tl`ue   that    significant   Macintosh   MS-BASIC   tin   and   IBM-PC
BASIC   tin   applications    ....

Replace  the  bulleted  items  as  follows:

•      Turn   on   the   Amiga  power   switch.      If  the  Amiga  prompts   you   for   a
Kickstart  disket,te,   then  insert  it  in  the  internal  drive.

•        once  the  Workbench  diskette  prompt  appears,   put  the  Workbench
diskette   into  the  disk  drive  and  wait  until  the  Workbench  icon
appears   and  disk  activity  has   ceased.

•        Put   the  Amiga  Extras   disk   into   any   31/2"   Amiga  disk   dl.ive.

.        Open  the  Extras   disk   icon.     Then  open  the  Amiga  Basic   icon.

Second  sentence  should  be  changed  to  read  as  follows:

To   display  the   cc>ntents   of  the  Extras   disk   in  the  output   window ....

Amiga  Basic  Errata         page  1



2-4

2-5

2-8

2-10

3-2

4-4

First  sentence  under  "Loading  Picture"  should  be  changed  to  read  as
follows:

Start    by    loading    the    program    called    Picture,    which    is    in    the
BasicDemos   draLwer   (or   directory)  .

Second sentence of first bulleted item;  delete the word  "Close"  from the
list  of  menu  items.

Second  bulleted  item  should  be  changed  to  read  as  follows:

®        Type

BasicDemos/Picture

After  third  bulleted  item,  add  the  following  note:

Note:    For   more   information   on   specifying   directory   names   and   file
na`mes,   see   the  AmigaDOS  Users  Manual.

First  paragraph  under   ``Moving  Through  the  List  Window"   should  be
changed  to  read  as  follows:

. .  .lower  right   corner  of  the  Amiga  keyboard ....

First  sentence  of  second  bulleted  item;  change  to  read  as  follows:

Release   the   Selection   button   and   move   the   pointer   to   the   Sizing
Gadget....

Second  bulleted  item  should  be  changed  to  read  as  follows:

®        Type

AmigaBasic

on  the   CLI   screen   (selected   from   the   System  drawel`) ....

Fourth   bulleted   item,   first   sentence,   should   be   changed   to   read   as
follows:

. . .the  display  scrolls   75%  to  the   right.

Amiga  Basic  Errata         page  2

I-

`-



-

-

``-,

4-7

5-12

7-2

7-3

7-4

7-5

7-6

First  sentence  should  be  changed to  read  as  follows:

.  .  you  ca,n  enter  the  CONT  comma,nd  .  .

Programming   example   under   item   3,   first  line,   should   be  changed   to   the
following:

LSET     NS   =   XS

Fourth  bulleted  item  should be  changed  to  read  as  follows:

•    paint,  t,he  interior  of  the  object,s  with  t,he  t)ol.den  color

First  sentence;  delete  the  word  "draw. "

Last paragraph,  under Menu  Bar,  should  read  as  follows:

Three    menus    are    ava,ila,ttle:    Hle,   Tools,    a,nd   Enlarge.      The    Tools    menu
pl`ovldes   severa,I   methods   of  creating   images.      The   File   Mehu   provides   a,
means   of  I.etrieving   and   sa,vine   the   object   files   you   area,te.     The   Enlal`ge
Menu  let,s  you  expand  your  object  fol`  a,ddin8  fine  details.

Add  the  following paragraph  at  the  end  of the  page:

To   CI`eate   ot)jects   with  mol.e   tha,n  foul.   colors,   change  the   ObjEdit  pl.ogl.a,in
(comments  a,I`e  included  in  the  pro8ra,in  listing  to  help  you  do  this).     The
pl.ogl.am  you  writ,e  tha,t  displays  the  resulting  images  must  cl.ea,te  a,  sol.een
of  like  depth.

Delete  the  last  sentence  of first paragraph.

First  sentence  should  be  changed to  read  as  follows:

.  summarizes  the  it,ems  in  the  Tools  menu.

Before   heading   entitled   "A   Note   about   Bobs   and   Sprites,"   add   the
following:

AmigaBasicErrata        page3



The   following  t,able   summarizes  the   items   in  the  Enlarge  Menu:

Item                       Function

4x4                            Expands   the  canvas  by  a   factor  of   four.      The  canvas
size  must  be  no   larger  than  100  pixels   across  by   31
pixels   down.

1xl

7-7

7-8

8-4

Restores   expanded  canvas   to  normal   size.

Change  text  under  "How  to  Create  Objects"  to  read  as  follows:

The    object    Editor    I`esides    on    the    Extras    disk    in    the    BasicDemos
drawer    under    the    name    objEdit.        You    open    the    editor    and    stal`t
operations     just,     as    you    would    any    other    Amiga    Basic    program.
(Chapter    2    gives    the    steps    to    achieve    this.)        Then,     follow   the
steps   listed  below.

Note:      If   you   use   a   256K   machine,    drag   the   object   Editor   icon   out
of   the   BasicDemos   window.      Then   close   all   windows   and   click   on   the
Object    Editor    icon.        This    frees    a    maximum    amount    of    memory    for
using   the   object   Editor.      If   you   wish   to   load   the   objEdit   program
from   within   Basic,    use   the    file   name    "basicdemos/objedit".       Also,
change   the   line  with  the  LIBRARY   statement   from

LIBRARY   "graphics. Iibral.y"

t,o

LIBRARY   " :basiodemos/graphics. library"

Last  paragraph,  first  sentence,  should  be  changed  to  read  as  follows:

. . .   entirely   surrounded  by  an  outline  of  the   same   color.

Add  the  following  note  before  ``Label  Definitions":

Note:         Amiga    Basic    executes    each    line    you    enter.    sequentially,
regal.dless   of   the   line   number   you   assign.       You   should   be   aware   of
t.his   if   you   are   accustomed   to   using   another   Basic   that   sorts   the
lines   sequentially  before  execution.

Amiga  Basic  Errata         page  4

`-

-

-,



8-5

8-12

8-15

8-16

-

-

EE`

8-17

8-18

8-31

Add  the  following text  at  the  end  of  the  "Restrictions"    section:

Warning:    Line   numbers   are   used   only   as    labels.       Amiga   Basic   does
not   sort  them  or  remove  duplicates.

Change  third  and  fourth  items  in  Operators  table  to  the  following:

*       Multiplication                                  X*Y

/       Floating  Point  Division            X/Y

Table  of  logical  operators,  result  column  for  the  AND  operator:
Change:
''X   and   ¥"      to   read        ''X   AND   Y''.

First paragraph,  second  sentence,  should be  changed to  read  as  follows:

Logical      operators      convert      their      operands      to      signed,      two's
complement   integers   ....

Third  paragraph  should  be  changed  to  read  as  follows:

....    and   8   =   binary   1000,    so    ....

Under  "Relational  Operators,"   change the list of relational  operators to
the  following:

=            <            >           <>           <=            >=

Add the following note after the second paragraph of the  CINT function
description:

Note:    For   a   decimal   portion   that    is    exactly    .5.    if   the    integer
portion   of  X   is   even,   the   function  rounds   down.      If   it   is   odd,    the
function  rounds   up.

In  the   output   for  the   CINT  programming  example,   the   integer   "6"
should  be  "7".

Amiga  Basic  Errata         page  5



8-32

8-33

8-34

8-35

8-36

8-38

8-42

CIRCLE  command  description,  fourth paragraph,  last  sentence,  should
be  changed  to  read:

...CIRCLE   STEP(20,15)    would   reference   a   point    30    for   x   and   25    for
y.

The  second  programming  example  for  CIRCLE  command,  fourth  line
should  be  changed  to  read:

ASPECT   =   ASPECT*1.4

Programming   example   for   CLEAR   command,   third   line   should   be
changed  to  read:

CLEAR    ,     ,2000

First  sentence  should  be  changed  to  read:

The   END,    SYSTEM,    and   CLEAR   stet,ements ....

Second  paragraph  should  be  changed  to  read:

See    also:    CLEAR,    END,    NEW,    OPEN,     STOP,    SYSTEM

Second  paragraph,  last  sentence  should  be  changed  to  read:

.  .  .    of   the   window   in   which   the   collision   identified   by   COLLISION(O)
occurred.

Add  the  following  note  to  the  end  of  the  CLNG  function  description:

Note:    F`or    a    decimal    portion   that    is    exactly    .5,     if    the    integer
portion  of  X   is   even,   the   function  rounds   down.      If   it   is   odd,   the
function  rounds  up.

Syntax  format  for  the  CVS  function  should  be  changed  to:

CVS    (4-byte  string)

Amiga  Basic  Errata         page  6

ERE

`-

``--



8-53

8-65

8-68

8-71

8-72

- Programming  example  for  the  FIELD   statement,   first  sentence,   should  be
changed to  read:

.  .  of  a,  pl.ogra,in  tha,t  opens  an  existing  file  a,nd  fields  it  for  three  va,riat)les.

Add  the  following  line  to  the  programming  example:

FIELD  #2,  20  AS  NS,  14  AS  AS,  4  AS  XS

Add the  following  note  after the  programming example:

See     pa,8e     5-11     for     a,    complete     progr.a,mming     exa,mple     that    uses     the
FIELD  command.

Add  the  following  note  after the  last  paragraph  under FILES:

If  s/r!.ng   specifies  a,  drive  numt)er,  the  sta,tement  lists  all  files  in  the  current
directory   of  t,he   disk  in  that   drive.   See   the  Ami.gaDOS   Users  A4¢#ka/  for   deta,ils
on  specifying  files  a,nd  their  pathna,mes.

Fourth  paragraph,  first  sentence,  should  be  changed  to  read:

.  .  wl.ong  type  of value  (st,ring  instead  of  numeric,  etc.)  ca,uses  .  .

Programming  example  for the  INT function,  output  line  three,  should  be:

-35

Syntax  format  for  the  LIBRARY statement  should  have  double  quotes  ai.ound
the  word  "filename.":

"filena,me"

Fifth  paragraph,  last  sentence,  should  be  changed  to  read:

Boxes  ar'e  drown  a,nd  filled  in  the  color  given  I)y  co/or-!.d.

Amiga  Basic   Errata       page  7



8-76

8-77

8-79

8-84

8-88

8-92

8-94

The   mathematical   expression   following   the   second   paragraph   should   be
changed to  read:

Number   of  Bytes   Read   or  Written   I   OPEN   s[a(emen[   Record  Size
=    #   Returned   by   LOC(fi[eramber)

First sentence of LOG function description should be  changed to read as
follows:

Returns   the  natural   (base  e)   logarithm  of  X.

Add   the  following   note   to   the   MENU   statement  explanation   for  the   state
argument:

When  you  compose  a,  menu  item  which  is  to  be  checkma,rked,  you  must  lea,ve
two  blank  spa,ces  ahea,d  of  the  item  for'  the  checkma,rk  to  be  rendel'ed.

Fourth  paragraph  of the  MENU  statement,  second  and third  sentences;  change
"20"  to  "19."

Programming  example  for  the  MKS  functions;  delete  third  line:

GET  #8,1

Syntax   format   for  the   NAME   statement   should   read   as  follows:

TitA;ME   "old-filename"      AIS   "Ilew-filename'"

Syntax  format  for  the  OBJECT.PLANES  statement  should  be  changed  to  the
following:

OBJECT . PIIAINES  object,-id  [,plane-pick]  [,pla,ne-on-off]

First  paragraph,  first  sentence,  should  be  changed  to  read  as  follows:

.  .  routine  tha,t  starts  up  and  handles  collisions  of  the  objects  .  .

Programming  example,  IF.   .   .  END  IF  structure,  should  be  changed  to  the
following:

IF i = -2  0R j= -4  THEN
object  bounced  off  left  op  right  border

Amiga Basic  Errata       page  8

ERE

`-

RE



-

-

`-

8-97

8-99

8-100

8-106

8-109

OBJECT   VX   i,-OBJECT   VX(i)

ELSE
'   object  bounced  off  top  or  bottom  border

OBJECT   VY   i,-OBJECT   VY(i)

END   IF

First  Sentence  of  OCTS  function  description  should  be  changed to  read
as  follows:

Returns   a   string   that   I`epresents   the   octal   value   of   the   decimal
argument .

Add the ON ERROR GOTO,  ON...GOSUB,  and  ON...GOTO  command
descriptions.     (See  Insert  1,  attached.)

Last paragraph,  second  sentence,  should be  changed to  read  as  follows:

.  .  .    128  bytes   for  random  and  sequential   files.

First  sentence  should  have  the  parentheses  removed  from  around  the
word  "address."

Programming  example  for  the  POS  function  should  be  changed  to:

POS (x)

POS  function  description,  first  sentence,  should  be  changed  to  read  as
follows:

Returns   t.he   approximate   column  number  of  pen   in  current ....

Third paragraph,  second sentence,  should be changed to read as follows:

The   horizontal   argument   of   the   LOCATE   statement    is   the   inverse   of
the   PoS   function.

Second  line  of  programming  example  should  have  7  spaces  deleted  at
the beginning of the  remark.   This  will bring the  word  "POSITION"  uP
from  the  next  line.

Amiga  Basic  Errata         page  9



8-114

8-116

8-117

8-126

8-130

Last  sentence  of  description  of  minus  sign   (-)   as  operator  should  be
changed  to  read  as  follows:

These   statements   generate  the   following:

Program  output  after  minus  sign  (-)  as  operator  should  be  changed  to
the  following:

-68.95   +2.40   -9.00

68.95-22.45      7.00-

Programming  example,   last  line,   for  double  asterisk   (**)   as  operator
should  be  changed  to  the  following:

*12 . 39*-0 . 90765 .10

First  paragraph,   last  sentence,   of  description   of  four   carets   (^^^^)   as
operator  should  be  changed  to  read  as  follows:

The   following  examples   show  the   exponential   format:

Second   paragraph,   last   sentence,    of   PRINT#   statement   description
should  be  changed  to  read  as  follows:

The    expresJ!.o#-J!.s!   items     are    numeric     or    string    expressions    to     be
written  to  the  file.

Next to last paragraph of RETURN command  description,  last sentence,
should  be  changed  to  read:

Using    a    RETURN    from    within    a    F`OR     loop     is    not     good    programming

practice   and   should  be  discouraged.

The  syntax  format  for  the  SAY  command  should  be  changed  to  the
following,

SAT   "string"    I,mode-array|

Last   paragraph   before   table;   replace   all   occurrences   of   "P%"    with

Amiga  Basic  Errata          page  10

-

RE

EE



`-

EEBD

RE

8-130

8-133

8-134

8-138

8-148

8-151

8-153

8-163

` ` nrode-array' '  .

Bottom  of page:  Element  #  column  for  "pitch"  parameter should have  a zero
(0).

The  example  for  SAY  should  show  that  all  text  in  the TEXTS  statement  must
be  in  capital  letters.

Third  paragraph,  second  sentence;  change  "400  to  "640".

Fourth  paragraph,  second  sentence;  change  "640"  to  "400".

Last  paragraph,  first  sentence,  should  be  changed  to  read  as  follows:

The  following  t,able  shows  four  octaves  of  notes  and  t,heir  .  .

Add  the TAB  function  description.  (See  Insert  2,  attached.)

Programming  example,  second  line,  for the TRANSLATES  function  should be
changed  to  read:

SAY  (AS)

First  sentence  of the VAL  statement  description  should  be  changed  to  read  as
follows:

Returns  the  numeric  va,lue  of  string  XS.

Programming   example,   third   line,   for   the   WRITE#   statement   sht>iild   be
changed  to  read:

WRITE   #l,AS,BS,CS

Amiga  Basic  Errata       page  ll



ADDITIONAL  NOTES

When  a  file  name  is  contained  in  a  command,  it  must  be  enclosed  within  double
quotes.

The  following  are  known  bugs  in  version  1.0  of  Amiga  Basic:

Using the  BF  option  on the  LINE  statement  (which  floodfills  interior  of
box)   causes  Amiga  Basic  to  fail  if  the  box's  lower  border  is   200  or
greater.

If a user scrolls through the  List window after closing the  Output window
and then closes the List window,  Basic returns  control to Workbench but
does  not  release  the  memory  it  used  (  about  128  k).

The second,  ending,  label or line number in the  LIST syntax is ignored.
For  example,

LIST  start  -  init

lists  entire  program  from  "start"  onwards.

The  following  problems  remain  in  the  line  editor:

When user types past the right border of the  List window,  causing an
automatic  rightward  shift,  characters  are  sometimes  missorted.

The  "Copy"  feature  in the  Edit  menu  has  garbage  characters  in  its
clipboard.    When  user  highlights  past  the  exact  characters  to  be
copied,  then pastes, the result is the  desired characters plus garbage.
For  example,  if the  following  is  highlighted  and  Copied:E-
When  copied  (or  Cut)  characters  are  Pasted,  the  result  might  be

xyz   RINT

The  DEL  key  is  not  implemented  with  respect  to  the  line  editor
(although  BACKSPACE  does  work).

Amiga  Basic  Errata          page   12

`-

`-

EE



The KILL and NAME commands don't affect related  .INFO files,  even
`+                     though  these  are  automatically  generated  with  the  SAVE  command.

The  following problems  remain  in  the  ObjEdit  program:

Amiga Basic will fail if the user attempts to run a version of ObjEdit
with  a  custom  screen  with  a  depth  of  three  or  more.

The  dependence  on  user's  pressing  ally  key  (using  INKEYS),  in
response  to  the  'Y  or  X  too  large'  message  regarding  the  Enlarge
feature,  results  in  confusion,  since  the  program  won't  respond  to
menu selections until a key has been pressed  (even though it appears
to).

If user  inputs  to  Enlarged  canvas  while  it  is  being printed,  a  16xl6
blowup of rightmost portion of object prints across screen and menus
cease  to  respond.

Comment  line  instructing  user  in  creating  objects  in  3  bit  planes
should  be  changed  to  read:

".  . .alter   the  next   4   lines. "

`-

`st
Amiga  Basic  Errata         page   13



Insert  1

0N ERROR GOTO ON  ERROR  GOTO  /czbe/

Sends  program  control  to  an  error-handling  routine.

After  enabling  error  handling,  all  errors  detected  cause  a jump  to  the  specified
error-handling routine.  If /czbc/ doesn't exist, Amiga Basic displays an "Undefined
label"  error  message.  The  RESUME  statement  is  required  to  continue  program
execution.

To  disable  error  handling,  execute  an  ON  ERROR  GOTO  0.  Subsequent  errors

generate an error message  and halt execution.  An ON ERROR GOTO 0 statement
that appears  in an error-handling routine causes Amiga Basic to stop and print the
error message  for the  error that  caused  the  trap.

It  is  recommended that  all error-handling routines execute an ON ERROR GOTO
0  if an  error  is  encountered  for  which  there  is  no  recovery  action.

See  also  RESUME.

Example:

10  ON  ERROR  GOTO   goo

80  PRIIVT   =   Bet,urn  fl`om  error"
900  IF  (ERR   =   230)  AIVD  (ERL   =   90)  THEIV  PRIINT  "try  a,ga,in"  :  RESUME  80

80  PRlrvT   =   "Bet,urn  fl.om  error."

`-

I-

EE



`-

`-

`-'

ON . . . GOSUB
ON . . . GOTO

OTFT  expression  Cos:UB  label-list

•  OTN  expression  QCJTO  label-lisl

Branches  to  one  of  several  specified  line  numbers  or  labels,  depending  on  the
value  returned  when  an  expression  is  evaluated.    This  is  called  a  "computed
GOSUB"  or  "computed GOTO."

The  value  of cxprcfsz.o#  determines  which  line number or label  in  the /abc/-/jsf is
used for branching.  If the value is a noninteger, the fractional portion is rounded.

The  /czbc/-/j.s/  is  a  series  of line  numbers  or labels  to  which  program  control  will
be routed depending on  the  value of the expression.   For example,  if the value of
the  expression  is  three,  the  third  item  in  the  /czbc/-/z.s/  is  the  destination  of  the
branch.

In  the ON . . . GOSUB  statement,  each  line  named  in the list must be the first line
of`  a  subroutine.

If the  value  of the  c'xprcssz.o#  is  zero,  or greater than  the  number of items  in  the
list   (but   less   than   or   equal   to   255),   Amiga   Basic   continues   with   the   next
executable  statement.    If  the  value  of  the  cxprcssz.o"  is  negative  or  greater  than
255,  an  "illegal  function  call"  error message  is  generated.

Example:

'Thj.s  program  illustra,tes  the  use  of  the
'Orv . . . GOSUB   Sta,tement

START:

IINPUT  "Enter  your  choice  numt>er  (I.   .   .  3)  ?   ",CHOICE%
IF  CHOICE97o   <   I   OR   CHOICE97o   >5  THEN   GOTO   START:

ON  CHOICE97o   GOSUB   SUBl,SUBS,SUBS

END

SUB|:



\ \
Insert 2

TAB IRE(I)

Moves the print position  to  I.

If the  current print  position  is  already  beyond  space  I,  TAB  goes  to  that position
on  the  next  line.    Space  I  is  the  leftmost  position,  and  the  rightmost  position  is
the width. TAB may only be used in PRINT and LPRINT statements. A semicolon
(;)  is  assumed to  precede  and  to  follow  the TAB(I)  function.

Example:

PRIRTT  "   RTa,me";TAB( 16);"Amount  Due"

PR I INT TAB ( 2 ) ; " ---- " ; TAB ( 16 ) ; " ----------
FOR  I9/o   =    I   to  6

READ  AS,B
PRIHT  "   ";AS;TAB(18);B

NEXT  I9ro

DATA  "G.  T.  Jones",25,"T.  Beal`",l

DATA  "8.  Charlt,on",55,"B.Moore"99
DATA  "G.   Best",   100,  "IT.  Styles",13.50

These   statements   display   the   following:

Na,me      Amount  Due

G.T.  Jones      25

T.  Bear              I
8.  aha,I.lton  33
B.  Moore         99
G.  Best             loo
N.  Styles          15.5

`-

\-

`,,



|J

\
tL'



\-.I

EE±

C=commodore
Commodore  Buslness  Machines,  lnc.

1200 Wilson  Drive,  West  Chester,  PA  19380

Commodore  Buslness  Machines,  Llmlted
3370  Pharmacy  Avenue,  Aglncourt,  Ontario,  MIW  2K4

Copyrlght  1985  ©  Commodore-Amlga,    lnc.

Copyrlght  ©  Mlcrosoft® Corporation,1985.    All  rights  reserved,


	Introduction to Amiga
	Chapter 1: Introducing the Amiga
	Chapter 2: Setting Up the Amiga
	Chapter 3: Getting Started
	Chapter 4: Using the Workbench
	Chapter 5: Adding to the Amiga
	Chapter 6: Caring for the Amiga
	Chapter 7: Reference
	Appendix A: Workbench Tools
	Appendix B: AmigaDOS Messages
	Appendix C: Changing the Pointer
	Glossary
	Index
	Appendix Addendum
	Appendix D: The Calculator
	Appendix E: The Icon Editor

	Amiga Basic
	Chapter 1: Introducing Amiga Basic
	Chapter 2: Getting Started
	Chapter 3: Using Amiga Basic
	Chapter 4: Editing and Debugging Your Programs
	Chapter 5: Working with Files and Devices
	Chapter 6: Advanced Topics
	Chapter 7: Creating Animated Images with the Object Editor
	Chapter 8: BASIC Reference
	Appendix A: Caracter Codes
	Appendix B: Error Codes and Error Messages
	Appendix C: Microsoft BASIC Reserved Words
	Appendix D: Internal Representation on Numbers
	Appendix E: Mathematical Functions
	Appendix F: LIBRARY FORMAT
	Appendix G: A Sample Program
	Appendix H: Writing Phonetially for the Say Command
	Index
	Amiga Basic: Errata for Revision A


